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who is this for?
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who is this for?

Fairly new to C#

Familiar with Java*
* or any other object-oriented & strongly typed language

Wanting to make games using C#
* see Unity, Godot, MonoGame, FNA, etc etc etc

3



on the Java note
a quick warning in advance
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C#
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MICROSOFT’S JAVA
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things you can keep if you already know java

Java Virtual Machine -> Common Language Runtime

Most of the syntax

Lots of the same OO language features

Garbage collection (we’ll be talking about this!)


>> this session will assume you are semi-comfortable with Java 
principles!
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on the games note
last warning, then content, i swear
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this is written with Unity in mind
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this is written with Unity in mind
but nearly all of this is transferable
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this is written with Unity in mind
but nearly all of this is transferable
and for gamedev folks, you’ll be using Unity as part of your degree
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C# Fundamental 0: 

What IDE do I use?
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C# Fundamental 0: 

Which of the three different Visual Studios 
should I use?
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Visual Studio
Windows

+ Free below a revenue cap


+ The OG C# IDE


+ Great Unity integration OOB


+ Lots, and lots of features


- Windows only


- Quite heavy


- Lots, and lots of features
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Visual Studio for Mac
macOS

+ Free below a revenue cap


+ Good Unity integration OOB


+ Quick to get started with


- Already deprecated by Microsoft


- Buggy and clunky


- Lacking in a lot of features compared to it’s 
Windows counterpart


- Not really Visual Studio - it’s just an old IDE 
called Xamarin Studio, which itself was an older 
IDE called MonoDevelop
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Visual Studio Code
Windows, macOS, Linux

+ Base editor is free and open source


+ The only supported option on Linux (and 
soon to be macOS…)


+ Extension support - can keep your one 
IDE & workflows for C#, Python, JS…


- Unity support is still in preview, and is still 
a little rough around the edges


- Requires installation of extensions for C#


- Extension is not open source, still subject 
to same VS license, for less features than 
the other VS IDEs…
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Visual Studio Code
Windows, macOS, Linux

macOS
Visual Studio for Mac

Visual Studio
Windows
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Visual Studio Code
Windows, macOS, Linux

macOS
Visual Studio for Mac

Visual Studio
Windows
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if 
you use the Nightly build
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if 
you use the Nightly build


+ Mature, stable, reliable
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if 
you use the Nightly build


+ Mature, stable, reliable


+ Supports cutting edge Unity 
features like ECS, Burst
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if 
you use the Nightly build


+ Mature, stable, reliable


+ Supports cutting edge Unity 
features like ECS, Burst


+ Shader support + Performance 
warnings as part of IntelliSense 
warnings
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you 
use the Nightly build


+ Mature, stable, reliable


+ Supports cutting edge Unity 
features like ECS, Burst


+ Shader support + Performance 
warnings as part of IntelliSense 
warnings


+ Integration with the Unity Editor and 
Unity Documentation
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you use 
the Nightly build


+ Mature, stable, reliable


+ Supports cutting edge Unity features like 
ECS, Burst


+ Shader support + Performance warnings 
as part of IntelliSense warnings


+ Integration with the Unity Editor and Unity 
Documentation


+ Recommended by one of the cofounders 
of Unity
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JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you use the 
Nightly build


+ Mature, stable, reliable


+ Supports cutting edge Unity features like ECS, 
Burst


+ Shader support + Performance warnings as 
part of IntelliSense warnings


+ Integration with the Unity Editor and Unity 
Documentation


+ Recommended by one of the cofounders of 
Unity


+ Super familiar if you’ve used IntelliJ
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JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so 
is VS Code…)
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JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so 
is VS Code…)


- Stable release requires signing up 
to JetBrains Student Program
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JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so 
is VS Code…)


- Stable release requires signing up 
to JetBrains Student Program


- Post graduation you (or your 
employer) will have to pay*


- Rider Early Access / Nightly is completely free, but can have bugs
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JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so 
is VS Code…)


- Stable release requires signing up 
to JetBrains Student Program


- Post graduation you (or your 
employer) will have to pay*


- Rider Early Access / Nightly is completely free, but can have bugs


- There is also a pretty heavy graduate discount, and you get to 
keep the version of Rider you pay for as a perpetual license
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Visual Studio Code
Windows

macOS
Visual Studio for Mac

Visual Studio
Windows

Windows, macOS, Linux
JetBrains Rider

, macOS, Linux

31



Visual Studio
Windows Windows, macOS, Linux

JetBrains Rider

, macOS, Linux

Windows devs: choose either macOS / Linux: just use Rider
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C# Fundamental 1: Value vs 
Reference Types
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Value Type

• Directly contains it’s data


• Generally simple primitives (floats, ints, bools, not strings!) 

• Cannot be null!


• Passing it to another method creates a copy of the data to work


with unless you specify it’s a reference with the “ref” keyword


• Stored on the stack, meaning fast allocation & deallocation
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Value Type

• Directly contains it’s data


• Generally simple primitives (floats, ints, bools, not strings!) 

• Cannot be null!


• Passing it to another method creates a copy of the data to work


with unless you specify it’s a reference with the “ref” keyword


• Stored on the stack, meaning fast allocation & deallocation


• Don’t worry if you don’t know what the stack means right now! Feel free to grab Val       and 
she can explain if you’re interested :)


• Time constraints my beloved
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Reference Type

• All your objects (strings, arrays lists, dictionaries, classes you define…)


• Passing it to another method is just referencing the same underlying data


• Reference to data existing in the “managed heap”


• Again, feel free to ask Val what this means!


• Stored on the heap, with references existing on the stack

• New references to existing data are still fast!


• Creating data is relatively slow :( 


• Can lead to garbage, causing really bad performance issues :((((
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a quick game
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VALUE

REFERENCE

or
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int someInt; 
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int someInt; 

VALUE
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string someString; 
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string someString; 

REFERENCE
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float someInt; 
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float someInt; 

VALUE
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string[] arrayOfStrings; 
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string[] arrayOfStrings; 

REFERENCE
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int[] myIntArray; 
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int[] myIntArray; 

REFERENCE
Arrays of value types are 

still reference types
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CoolCustomClass myObject; 
public class CoolCustomClass 
{ 
     public int x; 
     public int y; 
} 

49



CoolCustomClass myObject; 
public class CoolCustomClass 
{ 
     public int x; 
     public int y; 
} 

REFERENCE
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CoolCustomStruct myStruct; 
public struct CoolCustomStruct 
{ 
     public int x; 
     public int y; 
} 
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CoolCustomStruct myStruct; 
public struct CoolCustomStruct 
{ 
     public int x; 
     public int y; 
} 

VALUE
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StructOfStrings myStruct; 
public struct StructOfStrings 
{ 
     public string x; 
     public string y; 
} 
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StructOfStrings myStruct; 
public struct StructOfStrings 
{ 
     public string x; 
     public string y; 
} 

VALUE
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StructOfStrings myStruct; 
public struct StructOfStrings 
{ 
     public string x; 
     public string y; 
} 

VALUE 
(but x and y are still reference types)
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Structs

- Great for small collections of other fields

- Can support methods, same as a class

- Structs are a value typed collection of fields


- As such, passing a struct to another function will create a copy, not 
a reference by default!

- You can pass a struct by reference with the ref keyword - ask Val, 
and she can show you demos (time constraints!)
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demo
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C# Fundamental 2: 

Garbage Collection
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What is garbage?

A reference type, with no references to it
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What is garbage collection?

Diagram of the Managed Heap 
Copyright Unity Technologies, 2023

Your C# runtime going 👀 Looking 👀, specifically for objects in the 
managed heap with no references on the stack 
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Why is garbage bad?

- It’s expensive to allocate managed objects

- Garbage Collection is a very expensive operation to run, so we 

want to avoid generating garbage where possible
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What do you mean by “expensive”?

- If your game is targeting 60FPS, you have 16.67ms to get a frame 
out to the display


- Garbage Collection takes a lot of time to complete, especially if you 
have a lot of garbage


- This could cause frequent stuttering!
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How do I avoid generating garbage?

- Keep an eye out for when you’re constantly making new objects

- Could it be done with a value type?

- Could you modify the values of an object you allocate once?


- Watch out for strings and arrays!

- Strings are references types; as such, generating and passing around strings can 

lead to suboptimal performance

- This includes string concatenations (IE: “foo” + “bar” will generate garbage)

- Consider alternatives, such as passing an enum instead
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Is garbage the end of the world?

- No!
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Is garbage the end of the world?

- No!


- But it’s useful to have an understanding, and get performance gains 
where you can
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Is garbage the end of the world?

- No!


- But it’s useful to have an understanding, and get performance gains 
where you can


- Unity’s “Incremental GC” won’t save you, but, it can help to reduce 
GC “spikes”
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Is garbage the end of the world?

- No!


- But it’s useful to have an understanding, and get performance gains 
where you can


- Unity’s “Incremental GC” won’t save you, but, it can help to reduce 
GC “spikes”

- PAL will likely be doing a hands-on profiling workshop!

- Keep an eye out 👀
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C# Fundamental 3: Properties
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Java Land
getters, setters? more like get-out-of-town-ers. gottem

public class Player {
    private float playerHealth;
    
    public float GetPlayerHealth() {
        return playerHealth;
    }
    
    public void SetPlayerHealth(float f) {
        playerHealth = f;
    }
}
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C# Land

public class Player {
    private float playerHealth;
    
    public float GetPlayerHealth() {
        return playerHealth;
    }
    
    public void SetPlayerHealth(float f) {
        playerHealth = f;
    }
}
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C# Land

public class Player {
    public float playerHealth;
}
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C# Land

public class Player {
    public float PlayerHealth;
}

72

* naming conventions



but what about encapsulation???
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C# Land

public class Player 
{ 
    public float PlayerHealth; 
} 

the cool part
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C# Land

public class Player 
{ 
    private float _playerHP; 
    public float PlayerHealth 
    { 
        get 
        { 
            return _playerHP; 
        } 
        set 
        { 
            _playerHP = value; 
        } 
    } 
} 

the cool part
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C# Land

public class Player 
{ 
    private float _playerHP; 
    public float PlayerHealth 
    { 
        get 
        { 
            return _playerHP; 
        } 
        set 
        { 
            _playerHP = value; 
        } 
    } 
} 

the cool part

What used to be just a value has now been 
changed into a free getter and setter
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C# Land

public class Player 
{ 
    private float _playerHP; 
    public float PlayerHealth 
    { 
        get 
        { 
            return _playerHP; 
        } 
        set 
        { 
            _playerHP = value; 
        } 
    } 
} 

the cool part

What used to be just a value has now been 
changed into a free getter and setter

This means you do not need to write, generate 
or otherwise include getters and setters!
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C# Land

public class Player 
{ 
    private float _playerHP; 
    public float PlayerHealth 
    { 
        get 
        { 
            return _playerHP; 
        } 
        set 
        { 
            _playerHP = value; 
        } 
    } 
} 

the cool part

What used to be just a value has now been 
changed into a free getter and setter

This means you do not need to write, generate 
or otherwise include getters and setters!

This  “fake” field is called a “property”!
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demo
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C# Fundamental 4: Delegates
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What is a callback?

• A callback is some method you provide to another method, to run when 
Something happens


• e.g. - downloading files


• you have a function called ProcessText(string text);


• you have a function called DownloadText


• you WANT to tell DownloadText to call ProcessText when it’s done


• But, you don’t want to hard-code this



Callbacks in Java

• SO! Sometimes, we need callbacks!


• We could do something with an interface
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Interface Based Callbacks in Java
interface ICallback<T> { 
    public void CallbackMethod(T data); 
} 

class Foo { 
    public void DoAction(ICallback<Integer> c) { 
        // this is doing complex maths 
        int randomNumber = 4; 
        c.CallbackMethod(randomNumber); 
    } 
} 

public class Bar implements ICallback<Integer> { 
    public static void main(String[] args) { 
        Foo f = new Foo(); 
        Bar b = new Bar(); 
        // this will allow Foo to call our callback! 
        f.DoAction(b); 
    } 
     
    public void CallbackMethod(Integer data) { 
        System.out.println(data); 
    } 
} 

83

This uses generics!

but; don’t super worry if generics aren’t your jam


just focus on how ICallback is used!




Interface Based Callbacks in C#
interface ICallback<T> { 
    public void CallbackMethod(T data); 
} 

class Foo { 
    public void DoAction(ICallback<int> c) { 
        // this is doing complex maths 
        int randomNumber = 4; 
        c.CallbackMethod(randomNumber); 
    } 
} 

public class Bar: ICallback<int> { 
    public static void main(String[] args) { 
        Foo f = new Foo(); 
        Bar b = new Bar(); 
        // this will allow Foo to call our callback! 
        f.DoAction(b); 
    } 
     
    public void CallbackMethod(int data) { 
        Debug.Log(data); 
    } 
} 
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This uses generics!

but; don’t super worry if generics aren’t your jam


just focus on how ICallback is used!




Callbacks in Java

• Sometimes, we need callbacks!


• We could do something with an interface


• But this isn’t very flexible


• Everything needs to inherit the interface


• Very rigid, and can’t dynamically decide what’s the callback at runtime
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Callbacks in C#

• Sometimes, we need callbacks!


• We could do something with an interface


• But this isn’t very flexible


• Everything needs to inherit the interface


• Very rigid, and can’t dynamically decide what’s the callback at runtime


• Maybe C# has a better way…
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Interface Based Callbacks in C#
interface ICallback<T> { 
    public void CallbackMethod(T data); 
} 

class Foo { 
    public void DoAction(ICallback<int> c) { 
        // this is doing complex maths 
        int randomNumber = 4; 
        c.CallbackMethod(randomNumber); 
    } 
} 

public class Bar: ICallback<int> { 
    public static void main(String[] args) { 
        Foo f = new Foo(); 
        Bar b = new Bar(); 
        // this will allow Foo to call our callback! 
        f.DoAction(b); 
    } 
     
    public void CallbackMethod(int data) { 
        Debug.Log(data); 
    } 
} 

87



Delegate Based Callbacks in C#
class Foo { 
    public delegate void SetTextCallback(int data);      

    public void DoAction(SetTextCallback cb) { 
        // this is doing complex maths 
        int randomNumber = 4; 
        cb(randomNumber); 
    } 
} 

public class Bar { 
    public static void main(String[] args) { 
        Foo f = new Foo(); 
        Bar b = new Bar(); 
        // Explicitly send CallbackMethod! 
        f.DoAction(b.CallbackMethod); 
    } 
     
    public void CallbackMethod(int data) { 
        Debug.Log(data); 
    } 
} 
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Callbacks in C#

• Sometimes, we need callbacks!


• We could do something with an interface


• But this isn’t very flexible


• Everything needs to inherit the interface


• Maybe C# has a better way…


• As a delegate is a datatype, we can do more complex things (e.g, lists of 
delegates for callbacks, delegates in dictionaries, etc etc etc…)
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demo
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Example use of delegates

• How would you build an achievement system?


• Do you check all your achievements, every frame?


• No!


• Instead, lets have other bits of the game simply tell the achievements when 
things happen…


• E.g., when the player moves, the achievement system will just have a list of 
delegates to run!
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Example use of delegates

• How would you build an achievement system?


• Do you check all your achievements, every frame?


• No!


• Instead, lets have other bits of the game simply tell the achievements when 
things happen…


• E.g., when the player moves, the achievement system will just have a list of 
delegates to run!


• We have just come up with the Observer Programming Pattern
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Takeaways
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Takeaways

• Pick an IDE - Visual Studio or JetBrains Rider are recommended!


• Keep in mind whether something is a value, or a reference!


• Be aware of garbage, and try to minimise generating garbage in your code!


• Delegates can really help clean up your code!
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Further reading
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Further reading

• This QR code should take you to a bunch of 
links for further reading


• Outside of this, also explore learn.microsoft.com, Unity 
Learn, and the Unity Documentation! 


• Microsoft’s & Unity’s documentation are both really good, 
especially compared to what you may be used to


• It also has a direct link to the page to get the 
JetBrains student plan, for free Rider!
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Further reading / Some highlights!

• Unity Learn


• Great for beginners, and is usually up to date and trusted


• (love u Unity Learn team <3)


• Catlike Coding


• Great resource for when you want to go a bit deeper!


• Acerola

• Amazing channel if you ever want to explore the more shadery / technical art side of gamedev - we’ll likely be 

running some shader workshops in future, but, well worth a watch!
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⚠ YouTube Tutorial / ChatGPT Warning ⚠  



⚠ YouTube Tutorial / ChatGPT Warning ⚠  

• Be careful with YouTube tutorials (or, StackOverflow, Unity Forums/Discussions, 
etc etc…) and using ChatGPT


• Unity has changed quite a bit in the past few years


• AI tools are primarily trained on hobbyist code - there aren’t many open source 
commercial Unity games! - so, common mistakes will get repeated, and it will 
happily spout misinformation


• If you need advice on if a tutorial should be trusted, reach out to us on PAL! We 
can take a quick skim over, and give a temperature check for you



Next Sessions
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Next Sessions

• Thursday 

• Live game making workshop! Come along, and learn lots of practical Unity 
tips, remaking a certain cult-classic in the Informatics department


📅 Thursday 12th, 📍 FTL Lab, 🕕 14:00 -> 15:00 

• Other upcoming sessions 

• Will be announced on the EngInf Discord!


• PAL can also help out with specific gamedev queries you may have!
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