
PAL Val | Discord: @valknight.xyz
PAL Jude | Discord: @jude_birch

C# for Java Developers Crash
Course

1

who is this for?

2

who is this for?

Fairly new to C#

Familiar with Java*
* or any other object-oriented & strongly typed language

Wanting to make games using C#
* see Unity, Godot, MonoGame, FNA, etc etc etc

3

on the Java note
a quick warning in advance

4

C#

5

MICROSOFT’S JAVA

6

things you can keep if you already know java

Java Virtual Machine -> Common Language Runtime

Most of the syntax

Lots of the same OO language features

Garbage collection (we’ll be talking about this!)

>> this session will assume you are semi-comfortable with Java
principles!

7

on the games note
last warning, then content, i swear

8

this is written with Unity in mind

9

this is written with Unity in mind
but nearly all of this is transferable

10

this is written with Unity in mind
but nearly all of this is transferable
and for gamedev folks, you’ll be using Unity as part of your degree

11

C# Fundamental 0:

What IDE do I use?

12

C# Fundamental 0:

Which of the three different Visual Studios
should I use?

13

Visual Studio
Windows

+ Free below a revenue cap

+ The OG C# IDE

+ Great Unity integration OOB

+ Lots, and lots of features

- Windows only

- Quite heavy

- Lots, and lots of features

14

Visual Studio for Mac
macOS

+ Free below a revenue cap

+ Good Unity integration OOB

+ Quick to get started with

- Already deprecated by Microsoft

- Buggy and clunky

- Lacking in a lot of features compared to it’s
Windows counterpart

- Not really Visual Studio - it’s just an old IDE
called Xamarin Studio, which itself was an older
IDE called MonoDevelop

15

Visual Studio Code
Windows, macOS, Linux

+ Base editor is free and open source

+ The only supported option on Linux (and
soon to be macOS…)

+ Extension support - can keep your one
IDE & workflows for C#, Python, JS…

- Unity support is still in preview, and is still
a little rough around the edges

- Requires installation of extensions for C#

- Extension is not open source, still subject
to same VS license, for less features than
the other VS IDEs…

16

Visual Studio Code
Windows, macOS, Linux

macOS
Visual Studio for Mac

Visual Studio
Windows

17

Visual Studio Code
Windows, macOS, Linux

macOS
Visual Studio for Mac

Visual Studio
Windows

18

19

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if
you use the Nightly build

20

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if
you use the Nightly build

+ Mature, stable, reliable

21

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if
you use the Nightly build

+ Mature, stable, reliable

+ Supports cutting edge Unity
features like ECS, Burst

22

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if
you use the Nightly build

+ Mature, stable, reliable

+ Supports cutting edge Unity
features like ECS, Burst

+ Shader support + Performance
warnings as part of IntelliSense
warnings

23

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you
use the Nightly build

+ Mature, stable, reliable

+ Supports cutting edge Unity
features like ECS, Burst

+ Shader support + Performance
warnings as part of IntelliSense
warnings

+ Integration with the Unity Editor and
Unity Documentation

24

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you use
the Nightly build

+ Mature, stable, reliable

+ Supports cutting edge Unity features like
ECS, Burst

+ Shader support + Performance warnings
as part of IntelliSense warnings

+ Integration with the Unity Editor and Unity
Documentation

+ Recommended by one of the cofounders
of Unity

25

JetBrains Rider
Windows, macOS, Linux

+ Free while you’re a student, or if you use the
Nightly build

+ Mature, stable, reliable

+ Supports cutting edge Unity features like ECS,
Burst

+ Shader support + Performance warnings as
part of IntelliSense warnings

+ Integration with the Unity Editor and Unity
Documentation

+ Recommended by one of the cofounders of
Unity

+ Super familiar if you’ve used IntelliJ

26

JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so
is VS Code…)

27

JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so
is VS Code…)

- Stable release requires signing up
to JetBrains Student Program

28

JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so
is VS Code…)

- Stable release requires signing up
to JetBrains Student Program

- Post graduation you (or your
employer) will have to pay*

- Rider Early Access / Nightly is completely free, but can have bugs

29

JetBrains Rider
Windows, macOS, Linux

- Pretty memory intensive (but, so
is VS Code…)

- Stable release requires signing up
to JetBrains Student Program

- Post graduation you (or your
employer) will have to pay*

- Rider Early Access / Nightly is completely free, but can have bugs

- There is also a pretty heavy graduate discount, and you get to
keep the version of Rider you pay for as a perpetual license

30

Visual Studio Code
Windows

macOS
Visual Studio for Mac

Visual Studio
Windows

Windows, macOS, Linux
JetBrains Rider

, macOS, Linux

31

Visual Studio
Windows Windows, macOS, Linux

JetBrains Rider

, macOS, Linux

Windows devs: choose either macOS / Linux: just use Rider

32

C# Fundamental 1: Value vs
Reference Types

33

Value Type

• Directly contains it’s data

• Generally simple primitives (floats, ints, bools, not strings!)

• Cannot be null!

• Passing it to another method creates a copy of the data to work

with unless you specify it’s a reference with the “ref” keyword

• Stored on the stack, meaning fast allocation & deallocation

34

Value Type

• Directly contains it’s data

• Generally simple primitives (floats, ints, bools, not strings!)

• Cannot be null!

• Passing it to another method creates a copy of the data to work

with unless you specify it’s a reference with the “ref” keyword

• Stored on the stack, meaning fast allocation & deallocation

• Don’t worry if you don’t know what the stack means right now! Feel free to grab Val and
she can explain if you’re interested :)

• Time constraints my beloved

35

Reference Type

• All your objects (strings, arrays lists, dictionaries, classes you define…)

• Passing it to another method is just referencing the same underlying data

• Reference to data existing in the “managed heap”

• Again, feel free to ask Val what this means!

• Stored on the heap, with references existing on the stack

• New references to existing data are still fast!

• Creating data is relatively slow :(

• Can lead to garbage, causing really bad performance issues :((((

36

a quick game

37

VALUE

REFERENCE

or

38

int someInt;

39

int someInt;

VALUE

40

string someString;

41

string someString;

REFERENCE

42

float someInt;

43

float someInt;

VALUE

44

string[] arrayOfStrings;

45

string[] arrayOfStrings;

REFERENCE

46

int[] myIntArray;

47

int[] myIntArray;

REFERENCE
Arrays of value types are

still reference types

48

CoolCustomClass myObject;
public class CoolCustomClass
{
 public int x;
 public int y;
}

49

CoolCustomClass myObject;
public class CoolCustomClass
{
 public int x;
 public int y;
}

REFERENCE

50

CoolCustomStruct myStruct;
public struct CoolCustomStruct
{
 public int x;
 public int y;
}

51

CoolCustomStruct myStruct;
public struct CoolCustomStruct
{
 public int x;
 public int y;
}

VALUE

52

StructOfStrings myStruct;
public struct StructOfStrings
{
 public string x;
 public string y;
}

53

StructOfStrings myStruct;
public struct StructOfStrings
{
 public string x;
 public string y;
}

VALUE

54

StructOfStrings myStruct;
public struct StructOfStrings
{
 public string x;
 public string y;
}

VALUE
(but x and y are still reference types)

55

Structs

- Great for small collections of other fields

- Can support methods, same as a class

- Structs are a value typed collection of fields

- As such, passing a struct to another function will create a copy, not
a reference by default!

- You can pass a struct by reference with the ref keyword - ask Val,
and she can show you demos (time constraints!)

56

demo

57

C# Fundamental 2:

Garbage Collection

58

What is garbage?

A reference type, with no references to it

59

What is garbage collection?

Diagram of the Managed Heap
Copyright Unity Technologies, 2023

Your C# runtime going 👀 Looking 👀, specifically for objects in the
managed heap with no references on the stack

60

Why is garbage bad?

- It’s expensive to allocate managed objects

- Garbage Collection is a very expensive operation to run, so we

want to avoid generating garbage where possible

61

What do you mean by “expensive”?

- If your game is targeting 60FPS, you have 16.67ms to get a frame
out to the display

- Garbage Collection takes a lot of time to complete, especially if you
have a lot of garbage

- This could cause frequent stuttering!

62

How do I avoid generating garbage?

- Keep an eye out for when you’re constantly making new objects

- Could it be done with a value type?

- Could you modify the values of an object you allocate once?

- Watch out for strings and arrays!

- Strings are references types; as such, generating and passing around strings can

lead to suboptimal performance

- This includes string concatenations (IE: “foo” + “bar” will generate garbage)

- Consider alternatives, such as passing an enum instead

63

Is garbage the end of the world?

- No!

64

Is garbage the end of the world?

- No!

- But it’s useful to have an understanding, and get performance gains
where you can

65

Is garbage the end of the world?

- No!

- But it’s useful to have an understanding, and get performance gains
where you can

- Unity’s “Incremental GC” won’t save you, but, it can help to reduce
GC “spikes”

66

Is garbage the end of the world?

- No!

- But it’s useful to have an understanding, and get performance gains
where you can

- Unity’s “Incremental GC” won’t save you, but, it can help to reduce
GC “spikes”

- PAL will likely be doing a hands-on profiling workshop!

- Keep an eye out 👀

67

C# Fundamental 3: Properties

68

Java Land
getters, setters? more like get-out-of-town-ers. gottem

public class Player {
 private float playerHealth;

 public float GetPlayerHealth() {
 return playerHealth;
 }

 public void SetPlayerHealth(float f) {
 playerHealth = f;
 }
}

69

C# Land

public class Player {
 private float playerHealth;

 public float GetPlayerHealth() {
 return playerHealth;
 }

 public void SetPlayerHealth(float f) {
 playerHealth = f;
 }
}

70

C# Land

public class Player {
 public float playerHealth;
}

71

C# Land

public class Player {
 public float PlayerHealth;
}

72

* naming conventions

but what about encapsulation???

73

C# Land

public class Player
{
 public float PlayerHealth;
}

the cool part

74

C# Land

public class Player
{
 private float _playerHP;
 public float PlayerHealth
 {
 get
 {
 return _playerHP;
 }
 set
 {
 _playerHP = value;
 }
 }
}

the cool part

75

C# Land

public class Player
{
 private float _playerHP;
 public float PlayerHealth
 {
 get
 {
 return _playerHP;
 }
 set
 {
 _playerHP = value;
 }
 }
}

the cool part

What used to be just a value has now been
changed into a free getter and setter

76

C# Land

public class Player
{
 private float _playerHP;
 public float PlayerHealth
 {
 get
 {
 return _playerHP;
 }
 set
 {
 _playerHP = value;
 }
 }
}

the cool part

What used to be just a value has now been
changed into a free getter and setter

This means you do not need to write, generate
or otherwise include getters and setters!

77

C# Land

public class Player
{
 private float _playerHP;
 public float PlayerHealth
 {
 get
 {
 return _playerHP;
 }
 set
 {
 _playerHP = value;
 }
 }
}

the cool part

What used to be just a value has now been
changed into a free getter and setter

This means you do not need to write, generate
or otherwise include getters and setters!

This “fake” field is called a “property”!

78

demo

79

C# Fundamental 4: Delegates

80

What is a callback?

• A callback is some method you provide to another method, to run when
Something happens

• e.g. - downloading files

• you have a function called ProcessText(string text);

• you have a function called DownloadText

• you WANT to tell DownloadText to call ProcessText when it’s done

• But, you don’t want to hard-code this

Callbacks in Java

• SO! Sometimes, we need callbacks!

• We could do something with an interface

82

Interface Based Callbacks in Java
interface ICallback<T> {
 public void CallbackMethod(T data);
}

class Foo {
 public void DoAction(ICallback<Integer> c) {
 // this is doing complex maths
 int randomNumber = 4;
 c.CallbackMethod(randomNumber);
 }
}

public class Bar implements ICallback<Integer> {
 public static void main(String[] args) {
 Foo f = new Foo();
 Bar b = new Bar();
 // this will allow Foo to call our callback!
 f.DoAction(b);
 }

 public void CallbackMethod(Integer data) {
 System.out.println(data);
 }
}

83

This uses generics!

but; don’t super worry if generics aren’t your jam

just focus on how ICallback is used!

Interface Based Callbacks in C#
interface ICallback<T> {
 public void CallbackMethod(T data);
}

class Foo {
 public void DoAction(ICallback<int> c) {
 // this is doing complex maths
 int randomNumber = 4;
 c.CallbackMethod(randomNumber);
 }
}

public class Bar: ICallback<int> {
 public static void main(String[] args) {
 Foo f = new Foo();
 Bar b = new Bar();
 // this will allow Foo to call our callback!
 f.DoAction(b);
 }

 public void CallbackMethod(int data) {
 Debug.Log(data);
 }
}

84

This uses generics!

but; don’t super worry if generics aren’t your jam

just focus on how ICallback is used!

Callbacks in Java

• Sometimes, we need callbacks!

• We could do something with an interface

• But this isn’t very flexible

• Everything needs to inherit the interface

• Very rigid, and can’t dynamically decide what’s the callback at runtime

85

Callbacks in C#

• Sometimes, we need callbacks!

• We could do something with an interface

• But this isn’t very flexible

• Everything needs to inherit the interface

• Very rigid, and can’t dynamically decide what’s the callback at runtime

• Maybe C# has a better way…

86

Interface Based Callbacks in C#
interface ICallback<T> {
 public void CallbackMethod(T data);
}

class Foo {
 public void DoAction(ICallback<int> c) {
 // this is doing complex maths
 int randomNumber = 4;
 c.CallbackMethod(randomNumber);
 }
}

public class Bar: ICallback<int> {
 public static void main(String[] args) {
 Foo f = new Foo();
 Bar b = new Bar();
 // this will allow Foo to call our callback!
 f.DoAction(b);
 }

 public void CallbackMethod(int data) {
 Debug.Log(data);
 }
}

87

Delegate Based Callbacks in C#
class Foo {
 public delegate void SetTextCallback(int data);

 public void DoAction(SetTextCallback cb) {
 // this is doing complex maths
 int randomNumber = 4;
 cb(randomNumber);
 }
}

public class Bar {
 public static void main(String[] args) {
 Foo f = new Foo();
 Bar b = new Bar();
 // Explicitly send CallbackMethod!
 f.DoAction(b.CallbackMethod);
 }

 public void CallbackMethod(int data) {
 Debug.Log(data);
 }
}

88

Callbacks in C#

• Sometimes, we need callbacks!

• We could do something with an interface

• But this isn’t very flexible

• Everything needs to inherit the interface

• Maybe C# has a better way…

• As a delegate is a datatype, we can do more complex things (e.g, lists of
delegates for callbacks, delegates in dictionaries, etc etc etc…)

89

demo

90

Example use of delegates

• How would you build an achievement system?

• Do you check all your achievements, every frame?

• No!

• Instead, lets have other bits of the game simply tell the achievements when
things happen…

• E.g., when the player moves, the achievement system will just have a list of
delegates to run!

91

Example use of delegates

• How would you build an achievement system?

• Do you check all your achievements, every frame?

• No!

• Instead, lets have other bits of the game simply tell the achievements when
things happen…

• E.g., when the player moves, the achievement system will just have a list of
delegates to run!

• We have just come up with the Observer Programming Pattern

92

Takeaways

93

Takeaways

• Pick an IDE - Visual Studio or JetBrains Rider are recommended!

• Keep in mind whether something is a value, or a reference!

• Be aware of garbage, and try to minimise generating garbage in your code!

• Delegates can really help clean up your code!

94

Further reading

95

Further reading

• This QR code should take you to a bunch of
links for further reading

• Outside of this, also explore learn.microsoft.com, Unity
Learn, and the Unity Documentation!

• Microsoft’s & Unity’s documentation are both really good,
especially compared to what you may be used to

• It also has a direct link to the page to get the
JetBrains student plan, for free Rider!

96

Further reading / Some highlights!

• Unity Learn

• Great for beginners, and is usually up to date and trusted

• (love u Unity Learn team <3)

• Catlike Coding

• Great resource for when you want to go a bit deeper!

• Acerola

• Amazing channel if you ever want to explore the more shadery / technical art side of gamedev - we’ll likely be

running some shader workshops in future, but, well worth a watch!

97

⚠ YouTube Tutorial / ChatGPT Warning ⚠

⚠ YouTube Tutorial / ChatGPT Warning ⚠

• Be careful with YouTube tutorials (or, StackOverflow, Unity Forums/Discussions,
etc etc…) and using ChatGPT

• Unity has changed quite a bit in the past few years

• AI tools are primarily trained on hobbyist code - there aren’t many open source
commercial Unity games! - so, common mistakes will get repeated, and it will
happily spout misinformation

• If you need advice on if a tutorial should be trusted, reach out to us on PAL! We
can take a quick skim over, and give a temperature check for you

Next Sessions

100

Next Sessions

• Thursday

• Live game making workshop! Come along, and learn lots of practical Unity
tips, remaking a certain cult-classic in the Informatics department

📅 Thursday 12th, 📍 FTL Lab, 🕕 14:00 -> 15:00

• Other upcoming sessions

• Will be announced on the EngInf Discord!

• PAL can also help out with specific gamedev queries you may have!

101

!// [Slide left intentionally empty for Q&A]

102

