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• We could assume that  is some linear function of . In other words, for some 
unknown , we have:


                            

• We will refer to  as the parameters, where  is the independent variable 
and  is the dependent variable.
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Recap: Linear Regression
• Our aim is to find the best set of parameters , i.e. the one 

that gives us the best result on our training data.


• Once we’ve learned the predictive model , we want to use it to make 
predictions  for the new data  that we haven’t seen before:


               

W* = {w*0 , w*1 }

f(x)
y′￼ x′￼

y′￼ = f(x′￼) = w*0 + w*1 x



• We can represent our data, parameters and target values using matrix notation:


  


                              

X =
x10 … x1d
⋮ ⋱

xn0 xnd

=
1 … x1d
⋮ ⋱
1 xnd

W =
w0
⋮
wd

̂y =
̂y0

⋮
̂yn

̂y = XW

•  is a design matrix, where  is the number of features and  is the 
number of examples
x d n

• We add a column of ones to capture an intercept
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Recap: Loss Functions
• Loss function measures deviation of the model’s prediction from the ground 

truth.


• Allows to evaluate the fit of a machine learning model.


• MSE is defined as the average sum of the squared differences between the 
prediction and the ground truth.
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Recap: Optimization using Normal Equations
• The gradient of RSS can be defined as follows:





∇W RSS =
1
2

∇W(y − XW)T(y − XW)

=
1
2

∇W((XW)T(XW) − y(XW)T − (XW)Ty + yTy)

=
1
2

∇W(WTXTXW − 2(XW)Ty + yTy)

=
1
2 (2(XTX)W − 2XTy)

= (XTX)W − XTy

aTb = bTa

∇xbTx = b
∇x xT Ax = 2Ax for a symmetric matrix A

(AB)T = BT AT



Optimization using Normal Equations
• The derivative becomes  at the minimum of a function.


• Since  is a quadratic function it will only have one minimum.


• If we solve the above expression for  we will get an expression for the 
minimum of our MSE loss function:





• Hence the value  that minimises the objective is given by:


0

RSS(W)

W

(XTX)W − XTy = 0
(XTX)W = XTy

W*

W* = (XTX)−1XTy = X†y



Polynomial Regression
• In practice, the data will often have a non-linear relationship with the targets.


• We can use polynomial regression to model more complex relationships.


• For example, if we have two features  and we use a polynomial of 
degree , the prediction will be defined by:





• Important: The model will be highly non-linear in , but still linear in  !
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Polynomial Regression

MSEtrain = 0.21 MSEtrain = 0.02 MSEtrain = 0.01
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Polynomial Regression

MSEtrain = 0.21 MSEtrain = 0.02 MSEtrain = 0.01
MSEtest = 0.24 MSEtest = 0.04 MSEtest = 669



Overfitting
• A very expressive model fits the training dataset 

perfectly.


• The model also makes wildly incorrect prediction 
outside the dataset and doesn’t generalize.


• Dealing with Overfitting:


• Reduce the complexity class of the model (going 
from polynomial to linear)


• Modify the loss function to penalise complex 
models that may overfit the data



Underfitting
• A small model (e.g. a straight line) will not fit the 

training data well.


• For held-out data it will not be accurate neither.


• Dealing with Underfitting:


• Increase model complexity class


• Create richer features that will make the dataset 
easier to fit



Regularization
• The idea of regularization is to penalize models that may overfit the data


• This could be done by changing the objective to include a term that penalizes 
complex models


• 


• The first part is a usual loss function, such as MSE.


• The second part is a regularizerthat penalizes models that are overly complex.


• A regularization coefficient  controls the strength of a regularizer.

J(W) =
1
2

(Xθ − y)T(Xθ − y) +
1
2

λ∥θ∥2
2

λ > 0



Regularization
• The derivative can then be calculated as:





The value of  that minimises the loss will then be: 

∇W J(W) = ∇W(1
2

(XW − y)T(XW − y) + λ∥W∥2
2)

= ∇W(RSS(W) +
1
2

λ∥W∥2
2)

= ∇W RSS(W) + λW
= (XTX)W − XTy + λW
= (XTX + λI)W − XTy

W W* = (XTX + λI)−1 + XTy



Credits
• https://github.com/kuleshov/cornell-cs5785-2022-applied-ml



