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Recap: Linear Regression

» \We could assume that y is some linear function of x. In other words, for some
unknown wy, w; € R, we have:

fx) =wy+wx

» We will refer to w,, w, as the parameters, where X is the independent variable
and y is the dependent variable.




Recap: Linear Regression

« Our aim is to find the best set of parameters W* = {w*, w{k}, i.e. the one
that gives us the best result on our training data.

» Once we’ve learned the predictive model f(x), we want to use it to make
predictions y’ for the new data x’ that we haven’t seen before:

y = f(x) = W6’< + w;kx




Recap: Linear Regression

 We can represent our data, parameters and target values using matrix notation:

X10 -+ Ald * X is a design matrix, where d is the number of features and n is the
X = number of examples
X0 X, * We add a column of ones to capture an intercept
| de WO yo



Recap: Loss Functions

* Loss function measures deviation of the model’s prediction from the ground
truth.

* Allows to evaluate the fit of a machine learning model.

» MSE is defined as the average sum of the squared differences between the
prediction and the ground truth.
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Recap: Optimization using Normal Equations

* The gradient of RSS can be defined as follows:

1
VyRSS = 5 Vi(y = XW)(y — XW)

1
= = Vi (XKW (XW) = yXW)T = XW)y +7y)

1
= Vi (WIXTXW — 2(XW)Ty + yTy)

= %(Z(XTX)W —2X"y)

= (X' X)W - X"y



Optimization using Normal Equations

e The derivative becomes () at the minimum of a function.

« Since RSS(W) is a quadratic function it will only have one minimum.

* |f we solve the above expression for W we will get an expression for the
minimum of our MSE loss function:

X' X)W -=X'y=0
X' XOH)W =Xy
» Hence the value W* that minimises the objective is given by:

W+ = (XTX)"1xTy = Xy



Polynomial Regression

In practice, the data will often have a non-linear relationship with the targets.

We can use polynomial regression to model more complex relationships.

For example, if we have two features X, X, and we use a polynomial of
degree 2, the prediction will be defined by:

f(x) = wy + wix; + wox, + w3x12 + w4x22 + WsX (X,

Important: The model will be highly non-linear in x, but still linear in W'!
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Overfitting

* A very expressive model fits the training dataset Polynomial of Degree 30
perfectly.

 The model also makes wildly incorrect prediction
outside the dataset and doesn’t generalize.

* Dealing with Overfitting: ‘\.\
» Reduce the complexity class of the model (going "'\% o 2o
from polynomial to linear) i -
Prediction
* Modify the loss function to penalise complex °

models that may overfit the data




Underfitting

* A small model (e.g. a straight line) will not fit the Polynomial of Degree 1
training data well.

* For held-out data it will not be accurate neither.
* Dealing with Underfitting:
* |ncrease model complexity class

* Create richer features that will make the dataset .
easier to fit — Tue tnction

@ Tan

® est




Regularization

* The idea of regularization is to penalize models that may overfit the data

* [his could be done by changing the objective to include a term that penalizes
complex models

1 T 1 >
. J(W) =5(X9—)’) (XH—Y)‘FE/W@HQ

* The first part is a usual loss function, such as MSE.

 The second part Is a regularizerthat penalizes models that are overly complex.

» A regularization coefficient A > O controls the strength of a regularizer.



Regularization

e The derivative can then be calculated as:

I T 2
Vi d(W) = Vi (S OOW = )XW = y) + 211 W3

1
_ VW(RSS(W) + Emwug)

= X' X)W =Xy + W
= X' X+ 1DW - X"y

The value of W that minimises the loss will then be: W* = (X' X + A1)~ + X'y
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* https.//github.com/kuleshov/cornell-cs5785-2022-applied-mi



