PAL Machine Learning Workshop Week 4: Polynomial Regression \& Regularization

Contents

- Recap: Linear Regression
- Polynomial Regression
- Overfitting \& Underfitting
- L2 Regularisation

Recap: Linear Regression

- We could assume that y is some linear function of x. In other words, for some unknown $w_{0}, w_{1} \in \mathbb{R}$, we have:

$$
f(x)=w_{0}+w_{1} x
$$

- We will refer to w_{0}, w_{1} as the parameters, where x is the independent variable and y is the dependent variable.

Recap: Linear Regression

- Our aim is to find the best set of parameters $W^{*}=\left\{w_{0}^{*}, w_{1}^{*}\right\}$, i.e. the one that gives us the best result on our training data.
- Once we've learned the predictive model $f(x)$, we want to use it to make predictions y^{\prime} for the new data x^{\prime} that we haven't seen before:

$$
y^{\prime}=f\left(x^{\prime}\right)=w_{0}^{*}+w_{1}^{* *} x
$$

Recap: Linear Regression

- We can represent our data, parameters and target values using matrix notation:

$$
\begin{aligned}
X & =\left[\begin{array}{ccc}
x_{10} & \ldots & x_{1 d} \\
\vdots & \ddots & \\
x_{n 0} & & x_{n d}
\end{array}\right]^{d+1} \begin{array}{l}
\text { • } x \text { is a design matrix, where } d \text { is the number of features and } n \text { is the } \\
\text { number of examples } \\
\text { - We add a column of ones to capture an intercept }
\end{array} \\
& =\left[\begin{array}{ccc}
1 & \ldots & x_{1 d} \\
\vdots & \ddots & \\
1 & & x_{n d}
\end{array}\right] n \quad W=\left[\begin{array}{c}
w_{0} \\
\vdots \\
w_{d}
\end{array}\right] d+1 \quad \hat{y}=\left[\begin{array}{c}
\hat{y}_{0} \\
\vdots \\
\hat{y}_{n}
\end{array}\right] n \quad \hat{y}=X W
\end{aligned}
$$

Recap: Loss Functions

- Loss function measures deviation of the model's prediction from the ground truth.
- Allows to evaluate the fit of a machine learning model.
- MSE is defined as the average sum of the squared differences between the prediction and the ground truth.

$$
\begin{aligned}
& R S S=\frac{1}{2} \sum_{i=1}^{n}(y-X W)^{2} \\
& M S E=\frac{1}{n} R S S
\end{aligned}
$$

Recap: Optimization using Normal Equations

- The gradient of RSS can be defined as follows:

$$
\begin{aligned}
\nabla_{W} R S S & =\frac{1}{2} \nabla_{W}(y-X W)^{T}(y-X W) \\
& =\frac{1}{2} \nabla_{W}\left((X W)^{T}(X W)-y(X W)^{T}-(X W)^{T} y+y^{T} y\right) \\
& =\frac{1}{2} \nabla_{W}\left(W^{T} X^{T} X W-2(X W)^{T} y+y^{T} y\right) \quad \begin{array}{l}
(A B)^{T}=B^{T} A^{T} \\
a^{T} b=b^{T} a
\end{array} \\
& =\frac{1}{2}\left(2\left(X^{T} X\right) W-2 X^{T} y\right) \quad \nabla_{x} x^{T} A x=2 A x \text { for a symmetric matrix } A \\
& =\left(X^{T} X\right) W-X^{T} y
\end{aligned}
$$

Optimization using Normal Equations

- The derivative becomes 0 at the minimum of a function.
- Since $R S S(W)$ is a quadratic function it will only have one minimum.
- If we solve the above expression for W we will get an expression for the minimum of our MSE loss function:

$$
\begin{aligned}
& \left(X^{T} X\right) W-X^{T} y=0 \\
& \left(X^{T} X\right) W=X^{T} y
\end{aligned}
$$

- Hence the value W^{*} that minimises the objective is given by:

$$
W^{*}=\left(X^{T} X\right)^{-1} X^{T} y=X^{\dagger} y
$$

Polynomial Regression

- In practice, the data will often have a non-linear relationship with the targets.
- We can use polynomial regression to model more complex relationships.
- For example, if we have two features x_{1}, x_{2} and we use a polynomial of degree 2 , the prediction will be defined by:

$$
f(x)=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}+w_{5} x_{1} x_{2}
$$

- Important: The model will be highly non-linear in x, but still linear in W !

Polynomial Regression

Overfitting

- A very expressive model fits the training dataset perfectly.
- The model also makes wildly incorrect prediction outside the dataset and doesn't generalize.
- Dealing with Overfitting:
- Reduce the complexity class of the model (going from polynomial to linear)
- Modify the loss function to penalise complex models that may overfit the data

Underfitting

- A small model (e.g. a straight line) will not fit the training data well.
- For held-out data it will not be accurate neither.
- Dealing with Underfitting:
- Increase model complexity class
- Create richer features that will make the dataset easier to fit

Regularization

- The idea of regularization is to penalize models that may overfit the data
- This could be done by changing the objective to include a term that penalizes complex models
- $J(W)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)+\frac{1}{2} \lambda\|\theta\|_{2}^{2}$
- The first part is a usual loss function, such as MSE.
- The second part is a regularizerthat penalizes models that are overly complex.
- A regularization coefficient $\lambda>0$ controls the strength of a regularizer.

Regularization

- The derivative can then be calculated as:

$$
\begin{aligned}
\nabla_{W} J(W) & =\nabla_{W}\left(\frac{1}{2}(X W-y)^{T}(X W-y)+\lambda\|W\|_{2}^{2}\right) \\
& =\nabla_{W}\left(R S S(W)+\frac{1}{2} \lambda\|W\|_{2}^{2}\right) \\
& =\nabla_{W} R S S(W)+\lambda W \\
& =\left(X^{T} X\right) W-X^{T} y+\lambda W \\
& =\left(X^{T} X+\lambda I\right) W-X^{T} y
\end{aligned}
$$

The value of W that minimises the loss will then be: $W^{*}=\left(X^{T} X+\lambda I\right)^{-1}+X^{T} y$

Credits

- https://github.com/kuleshov/cornell-cs5785-2022-applied-ml

