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Supervised Learning Problem
• Training data comes in pairs of inputs and targets.


, where , 


• The predictive model tries to model the relationship between inputs and targets.





• The goal is to accurately predict the label of new, unseen data based on the 
patterns learned from the labeled training data.


• Supervised learning is used in many real-world applications, such as image 
classification, natural language processing, and speech recognition.

Dtrain = {(x(i), y(i)) | i = 1,2,3,…, n} x(i) ∈ X y(i) ∈ Y

f : X → Y



• We could assume that  is some linear function of . In other words, for some 
unknown , we have:


                            

• We will refer to  as the parameters, where  is the independent variable 
and  is the dependent variable.

y x
θ1, θ2 ∈ ℝ

f(x) = θ0 + θ1x

θ1, θ2 x
y
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Linear Regression
• Our aim is to find the best set of parameters , i.e. the one that 

gives us the best result on our training data.


• Once we’ve learned the predictive model , we want to use it to make 
predictions  for the new data  that we haven’t seen before:


                           

θ * = {θ*1 , θ*2 }

f(x)
y′￼ x′￼

y′￼ = f(x′￼) = x′￼θ*



Multiple Linear Regression
• We can use more than two independent variables.





• The term   is always equal to . This is a convention used to represent the 
intercept or the constant term in the model equation.


                          

f(x) = θ0x0 + θ1x1 + θ2x2 + … + θdxd

=
d

∑
i=0

θdxd

x0 1



• We can represent our data, parameters and target values using matrix notation:


  


                              

X =
x10 … x1d
⋮ ⋱

xn0 xnd

=
1 … x1d
⋮ ⋱
1 xnd

θ =
θ0
⋮
θd

̂y =
̂y0

⋮
̂yn

̂y = Xθ

•  is a design matrix, where  is the number of features and  is the 
number of examples
x d n

• We add a column of ones to capture an intercept

Matrix Notation

d + 1

n

n
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Loss Functions
• Loss function measures deviation of the model’s prediction from the ground 

truth.


• Allows to evaluate the fit of a machine learning model.


• MSE is defined as the average sum of the squared differences between the 
prediction and the ground truth.



RSS =
1
2

n

∑
i=1

(y − Xθ)2

MSE =
1

2n

n

∑
i=1

(y − Xθ)2

x

y
Xθ



Optimization using Normal Equations
• The gradient of RSS can be defined as follows:





∇θJ(θ) =
1
2

∇θ(y − Xθ)T(y − Xθ)

=
1
2

∇θ((Xθ)T(Xθ) − y(Xθ)T − (Xθ)Ty + yTy)

=
1
2

∇θ(θTXTXθ − 2(Xθ)Ty + yTy)

=
1
2 (2(XTX)θ − 2XTy)

= (XTX)θ − XTy

aTb = bTa

∇xbTx = b
∇x xT Ax = 2Ax for a symmetric matrix A



Optimization using Normal Equations
• The derivative becomes  at the minimum of a function.


• Since  is a quadratic function it will only have one minimum.


• If we solve the above expression for  we will get an expression for the 
minimum of our MSE loss function:





• Hence the value  that minimises the objective is given by:


0

J(θ)

θ

(XTX)θ − XTy = 0
(XTX)θ = XTy

θ*

θ* = (XTX)−1XTy = X†y



Implementing Linear Regression
• Now let's try to write a linear regression by ourselves in Python!


• You can download today's notebook from Canvas or open it using this link.

https://colab.research.google.com/drive/14OtZ9BG4FYdQPdaL-a2x_WzJ0FVBXikd?usp=sharing


Extension: Gradient Descent Optimization
• Gradient Descent is an optimisation technique that finds a minimum of a 

function by changing its parameters in proportion to the negative of the 
gradient of the function at the current value.


• Don't worry too much about how it works. Just try to get an idea of what the 
optimization process actually looks like

• If you want more detail, we start by 
randomly initializing the weights, and 
then update them by taking the gradient 
of the loss function w.r.t each weight, 
multiplying it by a small number called 
the learning rate, and subtracting that 
value from our current weight value. This 
leads to a slow movement to the 
minimum of the function.


