Probability

PAL WORKSHOP

OUR GOAL FOR TODAY

01 WHAT IS PROBABILITY?

- Concerns the study on uncertainty (loosely speaking).
- For certain types of events, we cannot predict the outcome with certainty in advance, e.g. tossing a coin or tossing a die.
- However we know the set of all possible outcomes for these events.
- We would like to use probability to measure the chance of something occurring in an experiment

PROBABILITY

H: What is it? C:DOG

100%DOG true!

Then what is it?

PROBABILITY

iris setosa

02 **RANDOM VARIABLES**

- The term itself is misleading as it is neither random nor is it a variable
- In fact it as a function

Let's consider the sample space of two successive coin tosses:

PROBABILITIES AS SETS

Mutually Exclusive events

Probability of a union of two events $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Non-mutually Exclusive events

Conditional probability of one event given another $P(A|B) = P(A \cap B)/P(B)$

Probability of a conjunction of two events $P(A \cap B) = P(A) \times P(B|A)$

Random Variable X = 1 HEAD(H) X(H) = 1

X(T) = 0

$\mathcal{T} = \{0, 1, 2\}$

$\mathbf{X}((H,H))=\mathbf{2}$ X((H,T)) = 1X((T,H)) = 1 $\mathbf{X}((T,T))=\mathbf{0}$

The Target Space \mathcal{T}

- Consider the set of all possible outcomes of throwing two six-sided dice.
- Then Ω can be represented as:

 $\Box); (\Box, \Box); (\Box, \Box); (\Box, \Box); (\Box, \Box) \}$

- One possible random variable we can define is the sum of the tosses. •
- In that case \mathcal{T} will be a set of integers from 2 to 12.

);
$$(\Box, \Box)$$
; (\Box, \Box) ; $($

6

PROBABILITY

$(1) \ 0 \le P(A) \le 1$ (2) P(S) = 1(3) If A_1, A_2, \dots are mutually exclusive events, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

In Words	Notation_1
All Heads	n(A) =
All Tails	n(B) =
All coins	n(S) =
Intersection: Both head and head	$n(A \cap B) =$
Only Heads: Head coins that are not tail coins	$n(A) - n(A \cap B)$
Only Tails: Tail coins that are not head coins	$n(B) - n(A \cap B)$
Union: Head or Tail	$n(A \cup B) =$
Everything else	$n(A \cup B)' =$

LET'S PRACTICE

Q1. Probability of getting an even number on rolling a dice once. what are smple space(S), Event(E) and probability?

Q2. If A & B are two mutually exclusive events then $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

 $A = \{Numbers greater than or equal to 4 in a dice roll\} = \{4,5,6\}$ $B = \{Numbers lesser than or equal to 4 in a dice roll\} = \{1,2,3,4\}$ $Then, what is P(A \cup B)?$

$= 0 \text{ and } P(A \cup B) = P(A) + P(B).$ $\{4,5,6\}$ $\{2,3,4\}$

DISCRETE & CONTINUOUS PROBABILITIES

- It is important to understand the difference between target space types.
- Discrete random variables:
 - Variable can take on a *discrete* set of values.
 - Value can be obtained by counting.
- Continuous random variables:
 - Variable can take on a continuous set of values.
 - Value can be obtained by measuring.

DISCRETE PROBABILITY

- The probability that a random variable X takes a particular value is $x \in T$ denoted as P(X = x)
- This expression is also called *probability* mass function.

P(X = 0) = 0.25P(X = 1) = 0.5P(X = 2) = 0.25

DISCRETE PROBABILITY

• When the target space is discrete we can imagine the probability distribution of multiple random variables as a multidimensional array of numbers

<i>y</i> ₃	0.1	0.07	0.06	0.03	0.1	► Joint pr = $P(X)$
<i>y</i> ₂	0.12	0.09	0.02	0.01	0.05	Margina that X ta
<i>y</i> ₁	0.18	0.01	0.11	0.02	0.03	 Condition the value
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	

- robability is defined as p(x, y) $= x_i, Y = y_i$
- al probability p(x) represents the probability akes the value x_i irrespective to the value of Y.
- onal probability p(y|x) will only consider Le of Y for a particular value of X.

What's difference between bar graph and histogram?

waater

on terms	Bar chart	Histogram chart
	To compare different categories of data.	To display the frequency of occurrences.
	Discrete values.	Non-discrete values.
	Categorical data.	Quantitative data.
7	Each data point is rendered as a separate bar.	The data points are grouped and rendered based on the bin value.
ween bars	Can have space.	No space.
g bars	Can be reordered.	Cannot reordered.
placement	Axis labels can be placed on or between the ticks.	Axis labels are placed on the ticks.
values	x and y.	Only y.

Reference: https://www.syncfusion.com/blogs/post/difference-between-bar-graph-and-histogram-chart.aspx

CONTINUOUS PROBABILITY

- Target spaces are intervals of the real line
- A *probability density function* is a function whose value at any given point in the sample space can be interpreted as providing a *relative likelihood* that the value of the random variable would be close to that sample.

THE LAW OF TOTAL PROBABILITY

 Suppose B₁,..., B_n are mutually exclusive and collectively exhaustive events in a sample space. We can then sum/integrate over the set of states of variable B to get a marginal distribution of variable A.

$$P(A) = \sum_{i}^{n} P(A|B_i) P(B_i) P(B_i) = \sum_{i}^{n} P(A|B_i) P(B_i) P(B_i) = \sum_{i}^{n} P(A|B_i) P(B_i) P($$

$P(A \cap B_i)$

THE LAW OF TOTAL PROBABILITY

- Mutually exclusive no overlap.
- Collectively exhaustive cover the whole space.

LET'S PRACTICE

Three robots are making parts at the Sussex factory. We know that:

A rate of Making parts

15% $P(D|R_2) = 0.15$ A rate of Deficiency of the parts, which the robot makes

What is the probability of a randomly selected part being defective?

P(D) = ?

05

MEASURES OF CENTRAL TENDENCY AND SPREAD

EXPECTATION AND VARIANCE

• Expected Value/Mean gives the weighted average of all possible outcomes of the random variable. Is not an expected outcome, but a theoretical mean!

• Variance represents the dispersion, i.e. how far a set of numbers is spread from the mean.

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x} (x - \mu)^2$$

• Standard Deviation is simply a square root of the variance

$$\sigma_X = \sqrt{Var(X)}$$

 $\mathbb{E}(X) = \sum x p(x)$

$$(-\mu)^2 p(x)$$

Definition

Covariance

Correlation

Corr[X,Y] = -

Covariance of two univariate random variables $X,Y \in \mathbb{R}$ is given by the expected product of their deviations from their respected means.

$$Cov(X,Y) = \mathbb{E}_{X,Y}[(x - \mathbb{E}_X[x])][(y - \mathbb{E}_Y[y])]$$

- **Correlation** is the normalized form of Covariance.
- Is useful when we want to compare the covariances between different pairs of random variables.

$$\frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} \in [-1,1]$$

Positive correlation As one variable increases

so does the other variable.

Negative correlation As one variable increases the other variable decreases.

No correlation

There is no relationship between the two variables.

cov(X, Y) < 0

$cov(X, Y) \approx 0$

Reference: https://www.internetgeography.net/scatter-graphs-in-geography/

06 DISTRIBUTIONS **Bernoulli distribution**

- Models the set of possible outcomes for a single experiment.
- $X \in \{0,1\}$
- Parameter $\rho \in [0,1]$ reflects the probability of getting a 1.
- PMF: $f(x; p) = \rho^{x} (1 \rho)^{1-x}$
- $\mathbb{E}[X] = p$
- Example: tossing a biased coin.

06 DISTRIBUTIONS **Binomial distribution**

- A generalization of Bernoulli for \mathbb{N} random variables, i.e. $X \in \mathbb{N}$.
- Parameters $\rho \in [0,1], n \in \mathbb{N} = 0,1,2,3,...$
- PMF: $f(x; p, n) = {n \choose k} \rho^{x} (1 \rho)^{n-x}$
- $\mathbb{E}|X| = n\rho$

06 DISTRIBUTIONS Binomial distribution

Let's have a closer look at the PMF:

$$f(x; p, n) = \binom{n}{k} \rho^x (1 - \rho)^{n-x}$$

Combination

$$\binom{n}{k} = \frac{n!}{n!(n-k)!}$$

Where n is the total number of possible outcomes,

k is number of items you want to rearrange.

🕨 YouTube

Intelligent Systems Lab

@intelligentsystemslab907 4.7K subscribers

jbstatistics

@jbstatistics 182K subscribers

3Blue1Brown

@3blue1brown 4.96M subscribers

Sol

StatQuest with Josh Starmer 🔹

@statquest 876K subscribers

Textbook

Useful materials