Probability

PAL WORKSHOP

OUR GOAL FOR TODAY

1
Laws of probabilities
2 Random Variables
3 Discrete and Continuous spaces
4 The Law of Total Probability
5 Measures of Central Tendency and Spread
6 Distributions

WHAT IS PROBABILITY?

- Concerns the study on uncertainty (loosely speaking).
- For certain types of events, we cannot predict the outcome with certainty in advance, e.g. tossing a coin or tossing a die.
- However we know the set of all possible outcomes for these events.
- We would like to use probability to measure the chance of something occurring in an experiment

PROBABILITY

H : What is it?
C: DOG

100\% DOG

true!

Then what is it?

PROBABILITY

Iris Dataset
$\left.\begin{array}{\|c\|c\|c\|c\|}\hline \begin{array}{c}\text { Sepal } \\ \text { Length }\end{array} & \begin{array}{c}\text { Sepal } \\ \text { Width }\end{array} & \begin{array}{c}\text { Petal } \\ \text { Length }\end{array} & \begin{array}{c}\text { Petal } \\ \text { Width }\end{array} \\ \hline & 5.1 & 3.5 & 1.4\end{array}\right) 0.2$
$\mathbf{1}$

02

RANDOM VARIABLES

- The term itself is misleading as it is neither random nor is it a variable
- In fact it as a function

$$
X: S \rightarrow \mathcal{T}
$$

Let's consider the sample space of two successive coin tosses:

PROBABILITIES AS SETS

Mutually Exclusive events

Non-mutually Exclusive events

Probability of a union of two events $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Conditional probability of one event given another $P(A \mid B)=P(A \cap B) / P(B)$

Probability of a conjunction of two events

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$

Probability of Non-event Complement $P\left(A^{c}\right)=P(S)-P(A)$

HEAD(H) Random Variable $\quad \boldsymbol{X}=1$

$$
X(\mathrm{H})=1
$$

TAIL(T) Random Variable $\boldsymbol{X}=0$

$$
X(\mathrm{~T})=0
$$

$\mathcal{J}=\{0,1,2\}$

$X((\boldsymbol{H}, \boldsymbol{H}))=2$
$X((H, T))=1$
$X((T, H))=1$
$\mathbf{X}((T, T))=\mathbf{0}$

The Target Space \mathcal{J}

－Consider the set of all possible outcomes of throwing two six－sided dice．
－Then Ω can be represented as：

凹）；（国，凹）；（国，田）；（国，図）；（国，田）\}
－One possible random variable we can define is the sum of the tosses．
－In that case \mathcal{T} will be a set of integers from 2 to 12 ．

PROBABILITY

(1) $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
(2) $\mathrm{P}(\mathrm{S})=1$
(3) If A_{1}, A_{2}, \ldots are mutually exclusive events, $\mathrm{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

In Words	Notation_1	Notation_2
All Heads	$\mathrm{n}(\mathrm{A})=$	$\mathrm{P}(\mathrm{A})=$
All Tails	$\mathrm{n}(\mathrm{B})=$	$\mathrm{P}(\mathrm{B})=$
All coins	$\mathrm{n}(\mathrm{S})=$	$\mathrm{P}(\mathrm{S})=$
Intersection: Both head and head	$\mathrm{n}(A \cap B)=$	$\mathrm{P}(A \cap B)=$
Only Heads: Head coins that are not tail coins	$\mathrm{n}(A)-\mathrm{n}(A \cap B)=$	$\mathrm{P}(A)-\mathrm{P}(A \cap B)=$
Only Tails: Tail coins that are not head coins	$\mathrm{n}(B)-\mathrm{n}(A \cap B)=$	$\mathrm{P}(B)-\mathrm{P}(A \cap B)=$
Union: Head or Tail	$\mathrm{n}(A \cup B)=$	$\mathrm{P}(A \cup B)=$
Everything else	$\mathrm{n}(A \cup B)^{\prime}=$	$\mathrm{P}(A \cup B)^{\prime}=$

LLETSS PRACTICE

Q1. Probability of getting an even number on rolling a dice once. what are smple space(S), Event(E)and probability?

Q2.If $A \& B$ are two mutually exclusive events then $P(A \cap B)=0$ and $P(A \cup B)=P(A)+P(B)$.
$A=\{$ Numbers greater than or equal to 4 in a dice roll $\}=\{4,5,6\}$
$B=\{$ Numbers lesser than or equal to 4 in a dice roll $\}=\{1,2,3,4\}$
Then, what is $P(A \cup B)$?

DISCRETE \& CONTINUOUS PROBABILITIES

- It is important to understand the difference between target space types.
- Discrete random variables:
- Variable can take on a discrete set of values.
- Value can be obtained by counting.
- Continuous random variables:
- Variable can take on a continuous set of values.
- Value can be obtained by measuring.

DISCRETE PROBABILITY

- The probability that a random variable \boldsymbol{X} takes a particular value is $\boldsymbol{x} \in \boldsymbol{T}$ denoted as

$$
P(X=x)
$$

- This expression is also called probability mass function.

$$
\begin{aligned}
& P(X=0)=0.25 \\
& P(X=1)=0.5 \\
& P(X=2)=0.25
\end{aligned}
$$

DISCRETE PROBABILITY

- When the target space is discrete we can imagine the probability distribution of multiple random variables as a multidimensional array of numbers

y_{3}	0.1	0.07	0.06	0.03	0.1	Joint probability is defined as $p(x, y)$ $=P\left(X=x_{i}, Y=y_{j}\right)$
y_{2}	0.12	0.09	0.02	0.01	0.05	- Marginal probability $p(x)$ represents the probability that X takes the value x_{i} irrespective to the value of Y.
y_{1}	0.18	0.01	0.11	0.02	0.03	- Conditional probability $p(y \mid x)$ will only consider the value of Y for a particular value of X.
	x	χ_{2}	x	x_{4}	x	

What's difference between bar graph and histogram?

CONTINUOUS PROBABILITY

- Target spaces are intervals of the real IiNR
- A probability density function is a function whose value at any given point in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be close to that sample.

THE LAW OF TOTAL PROBABILITY

- Suppose B_{1}, \ldots, B_{n} are mutually exclusive and collectively exhaustive events in a sample space. We can then sum/integrate over the set of states of variable B to get a marginal distribution of variable A.

$$
P(A)=\sum_{i}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)=\sum_{i}^{n} P\left(A \cap B_{i}\right)
$$

THE LAW OF TOTAL PROBABILITY

- Mutually exclusive - no overlap.
- Collectively exhaustive cover the whole space.

LLETSS PRACTICE

Three robots are making parts at the Sussex factory. We know that:

Robot 1

Robot 3

$P\left(R_{3}\right)=0.1$

What is the probability of a randomly selected part being defective?

$$
P(D)=?
$$

MEASURES OF CENTRAL TENDENCY AND SPREAD

EXPECTATION AND VARIANCE

- Expected Value/Mean gives the weighted average of all possible outcomes of the random variable. Is not an expected outcome, but a theoretical mean!

$$
\mathbb{E}(X)=\sum x p(x)
$$

- Variance represents the dispersion, i.e. how far a set of numbers is spread from the mean.

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} p(x)
$$

- Standard Deviation is simply a square root of the variance

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

Covariance of two univariate random

Covariance

 variables $X, Y \in \mathbb{R}$ is given by the expected product of their deviations from their respected means.
$\operatorname{Cov}(X, Y)=\mathbb{E}_{X, Y}\left[\left(x-\mathbb{E}_{X}[x]\right)\right]\left[\left(y-\mathbb{E}_{Y}[y]\right)\right]$

- Correlation is the normalized form of Covariance.
- Is useful when we want to compare the covariances between different pairs of random variables.

Correlation

$$
\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \in[-1,1]
$$

Positive correlation

As one variable increases so does the other variable.

Negative correlation
 As one variable increases

 the other variable decreases.No

correlation

There is no relationship between the two variables.

$\operatorname{cov}(X, Y)>0$

$\operatorname{cov}(X, Y)<0$

$\operatorname{cov}(X, Y) \approx 0$

DISTRIBUTIONS

Bernoulli distribution

- Models the set of possible outcomes for a single experiment.
- $X \in\{0,1\}$
- Parameter $\rho \in[0,1]$ reflects the probability of getting a 1 .
- PMF: $f(x ; p)=\rho^{x}(1-\rho)^{1-x}$
- $\mathbb{E}[X]=p$
- Example: tossing a biased coin.

06

DISTRIBUTIONS

Binomial distribution

- A generalization of Bernoulli for \mathbb{N} random variables, i.e. $X \in \mathbb{N}$.
- Parameters $\rho \in[0,1], n \in \mathbb{N}=0,1,2,3, \ldots$
- PMF: $f(x ; p, n)=\binom{n}{k} \rho^{x}(1-\rho)^{n-x}$
- $\mathbb{E}[X]=n \rho$

06

DISTRIBUTIONS

Binomial distribution

- Let's have a closer look at the PMF:

$$
f(x ; p, n)=\binom{n}{k} \rho^{x}(1-\rho)^{n-x}
$$

- Combination

$$
\binom{n}{k}=\frac{n!}{n!(n-k)!}
$$

Where n is the total number of possible outcomes,
k is number of items you want to rearrange.

Intelligent Systems Lab @intelligentsystemslab907 4.7K subscribers

Textbook

Useful

 materialsStatQuest with Josh Starmer •

