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WHAT IS PROBABILITY?

e Concerns the study on uncertainty (loosely speaking).

e For certain types of events, we cannot predict the outcome
with certainty in advance, e.g. tossing a coin or tossing a die.

e However we know the set of all possible outcomes for these
events.

e We would like to use probability to measure the chance of
something occurring in an experiment



PROBABILITY

H:Whatis it?
C:DOG

Then what is it?



PROBABILITY
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RANDOM VARIABLES

e The term itself is misleading as it is neither random nor is it a
variable
e [n fact it as a function

X: S »7T




Let’s consider the sample space of two successive coin tosses:

An Event
i7" Tossing a coin twice. S={HH, TT,HT, TH}
E ........ E={TT,TH} describes getting tails in

the first toss.

The sample Space

HH oo, Power sets  .oo..... . Aset of all possible subsets of
set A

HT o------- feeseee e Contains both @ and A

TH oeooee. --==-¢ A gsize of a power setis 2™

TT S e S={HH,TT,HT,TH},

P(A) = {¢,{HH},{TT},{HT},{TH},
{HH,TT},{HH,TH}..{HH,TT,HT, TH}}

A mapping from each event to the

The space of all potentia._l _______ seccccee e degree of belief that the event
results of the experiment. i..... P ..... E will occur
""""" eeeeewe S ={HH,TT, HT,TH),

if A={HH,TT}is the event that coins are

- 2
The Probability Measure no tails or heads, then P(A) = = 1/2.

The event Space

=]

The Target Space



PROBABILITIES AS SETS

Probability of a union of two events Probability of a conjunction of two events

Mutually Exclusive events P(AUB) = P(A) + P(B)— P(ANB) P(An B) = P(A) x P(B|A)

A B A B

Conditional probability of one event given another Probability of Non-event

P(A|B) =P(ANnB)/P(B) Complement P(A€) = P(S) — P(A)

A B




|
=

HEAD(H) Random Variable X

7={0,1,2}
X(H)=1
TAIL(T)  RandomVariable X =0 X((H; H)) = 2
X((H,T)) =1
) €LEL X(T,H)) =1

X(T, T) =0




The Target Space T

* Consider the set of all possible outcomes of throwing two six-sided dice.

* Then () can be represented as:
{(&, 0); (&, O); (&, B); (&, 8);, (&8, &), (4, 8); (", 8); (8, ), (0, &), (3, &), (4,

=); (3, 8); (8, 0); (&, O); (8, &), (8, 8); (&, &); (8, 8); (&, 8); (&, O); (8, &)

(2, B); (&, 82); (8, 8), (&8, 0);, (&, 0); (&, 1); (&, 8); (&, &), (&, 8), (8, 1), (&,

), (8, B); (8, 8); (8, B); (8, &)}

* One possible random variable we can define is the sum of the tosses.

* In that case J will be a set of integers from 2 to 12.




PROBABILITY

(1) 0 < P(A) < 1
(2) P(S) = 1

COo

(3) If Ay, A,, ...are mutually exclusive events,P(U;2, A;) = P(A);)
=1

L




In Words Notation_1 Notation_2

All Heads

All Tails

All coins

Intersection: Both head and head

Only Heads: Head coins that are not tail coins n(4) - n(A NB) = P(4) - P(A nB) =

Only Tails: Tail coins that are not head coins n(B) - n(A NB) = P(B) - P(A NB) =

Union: Head or Tail N(AUB) = P(AUB) =

Everything else n(

N
-
vy

—
|

P(AuB)' =




LET'S PRACTICE



(1. Probability of getting an even number on rolling a dice once.
what are smple space(S), Event(E )and probability?



Q2.1f A & B are two mutually exclusive events then P(ANB) =0and P(AUB) = P(A) + P(B).

A = {Numbers greater than or equal to 4 in a dice roll} = {4,5,6}
B = {Numbers lesser than or equal to 4 in a dice roll} = {1,2,3,4}

Then,what is P(AU B)?
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DISCRETE & CONTINUOUS
PROBABILITIES

e [t is important to understand the difference between target
space types.
e Discrete random variables:
o Variable can take on a discrete set of values.
o Value can be obtained by counting.
e Continuous random variables:
o Variable can take on a continuous set of values.
o> Value can be obtained by measuring.




DISCRETE PROBABILITY

e The probability that a random variable X takes
a particular value is x € T denoted as
P(X =x)
e This expression is also called probability
mass function.

P(X = 0) = 0.25
P(X=1)=0.5
P(X =2) = 0.25



DISCRETE PROBABILITY

e \WWhen the target space is discrete we can imagine the probability
distribution of multiple random variables as a multidimensional array

of numbers

yl
X1 X2 X3 X4 Xe

> Joint probability is defined as p(x, y)
=P(X =x;,Y = yj)

> Marginal probability p(x) represents the probability
that X takes the value x; irrespective to the value of Y.

> Conditional probability p(y|x) will only consider
the value of Y for a particular value of X.
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Rendering

Space between bars
Reordering bars

Axis label placement

Required values

Bar chart

To compare different
categories of data.

Discrete values.

Categorical data.

Each data point is rendered
as a separate bar.

Can have space.

Can be reordered.

Axis labels can be placed on

or between the ticks.

x and y.

Histogram chart

To display the frequency of

occurrences.
Non-discrete values.
Quantitative data.

The data points are grouped
and rendered based on the

bin value.
No space.
Cannot reordered.

Axis labels are placed on the

ticks.

Only y.

Reference: https://www.syncfusion.com/blogs/post/difference-between-bar-graph-and-histogram-chart.aspx



CONTINUOUS PROBABILITY

e Target spaces are intervals of the real iR

e A probability density function is a function
whose value at any given point in the
sample space can be interpreted as
providing a relative likelihood that the value
of the random variable would be close to
that sample.
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THE LAW OF TOTAL PROBABILITY

e Suppose B,,...,B,are mutually exclusive and collectively
exhaustive events in a sample space. We can then sum/integrate
over the set of states of variable B to get a marginal distribution
of variable A.

P(A) = SP(A|B)P(B)) = SP(A N By)




THE LAW OF TOTAL PROBABILITY

34/65 /
e Mutually exclusive - no )2

1 /_R

4
overlap. / \
e Collectively exhaustive - A/
cover the whole space. B, \\< Be
B, k




LET'S PRACTICE



Three robots are making parts at the Sussex factory. We know that:

QQ A rate of Making parts A rate of Deficiency of the parts, which the robot makes

Robot 3

‘59}.1096

P(Ry) = 0.6

P(R3) = 0.1

7% 15% 30%

P(D|R,) = 0.15 P(D|R3) = 0.3

P(D|R,) = 0.07




What is the probability of a randomly selected part being defective?

P(D)=7?
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MEASURES OF CENTRAL TENDENCY
AND SPREAD




EXPECTATION AND VARIANCE

e Expected Value/Mean gives the weighted average of all possible outcomes
of the random variable. Is not an expected outcome, but a theoretical
mean!

E(X) = 2xp(x)

e Variance represents the dispersion, i.e. how far a set of numbers is spread
from the mean.

Var(X) = E[(X — w)*] = g(-ff — W*p(x)

e Standard Deviation is simply a square root of the variance

oy =/ Var(X)




Covariance of two univariate random
variables X, Y& R is given by the expected
product of their deviations from their
respected means.

Covariance

Cov(X,Y) = Exy[(x — Ex[xD][(y — Ey[y])]

e Correlation is the normalized form of

Covariance.
-.—0—0—0 e |s useful when we want to compare the

covariances between different pairs of
random variables.

Corr[X,Y] = ——————




Positive
correlation cov(X,Y)>0

As one variable increases
so does the other variable.

Negative
cor?elation cov(X,Y)<O

As one variable increases
the other variable decreases.

No |
correlation cov(X,Y)=0

There is no relationship
between the two variables.

Reference: https://www.internetgeography.net/scatter-graphs-in-geography/
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DISTRIBUTIONS

Bernoulli distribution

* Models the set of possible outcomes for a single experiment.
e X €{0,1)

* Parameter p € |0,1] reflects the probability of getting a 1.

* PMF: f(x;p) = p*(1 = p)'™*
* E[X]=p

* Example: tossing a biased coin.
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DISTRIBUTIONS

Binomial distribution

* A generalization of Bernoulli for N random variables, i.e. X € N.

* Parameters p € [0,1|,n € N =0,1,2,3,...

* PMF: f(x;p,n) = (3)p*(1 — p)"™*
o E[X| =np
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DISTRIBUTIONS

Binomial distribution

* |et's have a closer look at the PMF:

fCspm) = (3)p*(1 —p)"~

* Combination

| N
G:) = n.!(':—.lc}l

Where N is the total number of possible outcomes,

k is number of items you want to rearrange.
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