PAL Machine Learning Workshop Week 1: Linear Algebra Recap

Contents

- Vectors
- Matrices
- Space Transformations
- Determinants and Singularity
- Inverses
- Dot Products

Why study Linear Algebra?

- Provides a mathematical framework for understanding many of the concepts used in machine learning algorithms.
- Allows for the efficient representation and manipulation of large amounts of data.
- Plays a key role in optimization techniques used to train many machine learning models.

Vectors

- Vector can be represented as a list of numbers indicating the coordinates of a point in space.

Vectors

- Vector can be represented as a list of numbers indicating the coordinates of a point in space.

Vectors

- Mathematically, we define the dimensionality of a vector as $v \in \mathbb{R}^{d}$, which means that v is an element of a d-dimensional real space.

Vectors

Scalar Multiplication

- Multiplying vector by a scalar means multiplying each of its components by that scalar.

Vectors

Addition

- Vectors are added component-wise.

$$
\varlimsup^{y} \vec{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \vec{v}+\vec{w}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Vectors

Addition

- Geometrically, this can be represented as placing the tail of the second vector at the tip of the first vector and drawing the third vector from the tail of the first vector to the tip of the second vector.

Vectors

Span

- The linear combination of two vectors is defined as a scalar multiple of one vector added to a scalar multiple of the other vector.

- The span of \vec{v} and \vec{w} is the set of all their linear combinations.
- If two vectors are linearly independent then their span will cover the entire 2D plane.

Vectors

Linear Independence in 3D

Linearly Independent
Linearly Dependent

Matrices

- We denote the size of a matrix as: $A \in \mathbb{R}^{m \times n}$.
- You can think of it simply as a two dimensional array of numbers.

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \\
a_{m 1} & & a_{m n}
\end{array}\right]
$$

Matrices

Multiplication

- To multiply a matrix by a vector, the number of columns in the matrix must be equal to the number of rows in the vector. The result of the multiplication is a new vector.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
A \vec{v}=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
\end{gathered}
$$

Matrices

Transformations

- Transformation can be though of as a function that takes some input (e.g. coordinates of a vector) and returns some output (e.g. where that vector lands).

$$
\left[\begin{array}{l}
x_{\text {in }} \\
y_{\text {in }}
\end{array}\right] \rightarrow ? ? ? \rightarrow\left[\begin{array}{l}
x_{\text {out }} \\
y_{\text {out }}
\end{array}\right]
$$

Matrices

Transformations

- A transformation is linear if:

1. All lines remain parallel and evenly spaced
2. Origin remains fixed

Linear Transformation

Non-Linear Transformation

Matrices

Transformations

- These properties allow us to determine where \vec{v} lands if we know where \hat{i} and \hat{j} land.

Matrices

Transformations

- These properties allow us to determine where \vec{v} lands if we know where \hat{i} and \hat{j} land.

$$
x\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+y\left[\begin{array}{c}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 x+2 y \\
-2 x+1 y
\end{array}\right]
$$

- This can also be described by a 2×2 matrix:

Where \hat{i} lands

Matrices

Transformations

- What will this transformation do?

Matrices

Transformations

- What will this transformation do?

Matrices

Transformations

- What will this transformation do?

Matrices

Transformations

- What will this transformation do?

Matrices

Transformations

- What will this transformation do?

$$
\begin{array}{r}
\left.\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \hat{j}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \xrightarrow[{\hat{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right.}]\right]{\rightarrow}
\end{array}
$$

Matrices

Transformations

- What will this transformation do?

Matrices

Composition

- Is the process of combining two or more matrices to form a new matrix.
- The result of the multiplication of two matrices A and B is a new matrix C, where each element of C is obtained by taking the dot product of a row of A and a column of B.
- Properties:

1. Associative: $A_{1}\left(A_{2} A_{3}\right)=\left(A_{1} A_{2}\right) A_{3}$
2. Not Commutative: \square

Matrices

Composition

$$
\left.\underset{\text { Shear }}{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]} \underset{\text { Rotation }}{\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right.}\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

$$
\underset{\text { Rotation }+ \text { Shear }}{\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrices

Transpose

- The transpose of a matrix is a new matrix that is obtained by reflecting the original matrix over its main diagonal.
- It switches the row and column indices of the matrix A by producing another matrix, often denoted by A^{T}.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad A^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \quad A_{i j}=A_{j i}^{T} \quad M=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Matrices

Identity Matrix

- A special type of matrix that has 1 's on the main diagonal and 0's everywhere else.
- If A is any matrix and I is it's identity matrix, then: $A I=I A=A$.
- Only exists for square matrices!

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A I=A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Matrices
 Diagonal Matrix

- A matrix in which the entries outside of the main diagonal are all zero.
- Usually refers to square matrices.
- Element of the main diagonal can either be zero to non-zero.
- Any identity matrix of any size is a diagonal matrix.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Matrices

Trace

- The trace of a square matrix is the sum of the elements on its main diagonal.

$$
\begin{aligned}
\operatorname{tr}(A) & =\sum_{i=1}^{n} a_{i i} \\
A & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right] \operatorname{tr}(A)=1+4+(-2)=3
\end{aligned}
$$

Matrices

Determinants

- The determinant of a square matrix is the scaling factor by which this matrix changes any area/volume inside our space.

Matrices

Determinants

- The determinant of a 2×2 matrix is defined as:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

-What is the determinant of this matrix?

$$
\operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
0 & 2
\end{array}\right)=?
$$

Matrices

Determinants

- The determinant of a 2×2 matrix is defined as:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- What is the determinant of this matrix?

$$
\operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
0 & 2
\end{array}\right)=3 \times 2-0 \times 2=6
$$

Matrices

Determinants

- The determinant of a matrix can be negative if the matrix represents a transformation that involves a reflection.

Matrices

Determinants

- If $\operatorname{det}(A)$ is 0 it means that 2D space gets squished to a 1D line and A is not invertible.

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)=0 \\
& \hat{j}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Matrices

Inverses

- Matrices can be used to solve systems of linear equations!

$$
\begin{aligned}
& 3 x+8 y=5 \\
& 4 x+11 y=7
\end{aligned} \quad\left[\begin{array}{cc}
3 & 8 \\
4 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

Matrices

Inverses

- Matrices can be used to solve systems of linear equations!

$$
\begin{aligned}
& 3 x+8 y=5 \\
& 4 x+11 y=7
\end{aligned} \quad\left[\begin{array}{cc}
3 & 8 \\
4 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

Matrices

Inverses

- Solving for \vec{v} :

We know: $\quad A \vec{v}=\vec{w}$
Then:

$$
\begin{aligned}
& A^{-1} A \vec{v}=A^{-1} \vec{w} \\
& I \vec{v}=A^{-1} \vec{w} \\
& \vec{v}=A^{-1} \vec{w}
\end{aligned}
$$

Matrices

Inverses

- Properties of Inverses:
- A is invertible only if $A A^{-1}=I$
- A^{-1} exists only if $\operatorname{det} A \neq 0$

Matrices
 Singular Matrix

- A square matrix is singular if the matrix has no inverse.
- To determine if the matrix is singular we need co compute its determinant.
- A square matrix is singular iff det $=0$.

Dot Product

- Algebraic interpretation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}
\end{aligned} \begin{aligned}
& {\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=2 \times 1+5 \times 3+1 \times 5=22} \\
& \\
& {\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right]=1 \times 2+3 \times 4=14}
\end{aligned}
$$

Dot Product

- Geometric interpretation:

$$
a \cdot b=\|a\|\|b\| \cos \theta
$$

Dot Product

- Geometric interpretation:

$$
a \cdot b=\|a\|\|b\| \cos \theta
$$

Dot Product

- Geometric interpretation:

$$
a \cdot b=\|a\|\|b\| \cos \theta
$$

Useful Links

- 3Blue1Brown Essence of Linear Algebra
- Mathematics from Machine Learning Specialisation
- Marc Peter Deisenroth "Mathematics for Machine Learning", Chapters 2,3

