PAL Machine Learning Workshop Week 1: Linear Algebra Recap

02/22/2023 18:00 Future Technologies Lab

Contents

- Vectors
- Matrices
- Space Transformations
- Determinants and Singularity
- Inverses
- Dot Products

Why study Linear Algebra?

- used in machine learning algorithms.
- data.
- learning models.

• Provides a mathematical framework for understanding many of the concepts

Allows for the efficient representation and manipulation of large amounts of

Plays a key role in optimization techniques used to train many machine

Vectors

a point in space.

• Vector can be represented as a list of numbers indicating the coordinates of

Vectors

a point in space.

Vector can be represented as a list of numbers indicating the coordinates of

Vectors

means that v is an element of a d-dimensional real space.

Mathematically, we define the dimensionality of a vector as $v \in \mathbb{R}^d$, which

Vectors **Scalar Multiplication**

0 that scalar.

Multiplying vector by a scalar means multiplying each of its components by

Vectors Addition

• Vectors are added component-wise.

$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \vec{v} + \vec{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Vectors Addition

vector to the tip of the second vector.

Geometrically, this can be represented as placing the tail of the second vector at the tip of the first vector and drawing the third vector from the tail of the first

Vectors Span

vector added to a scalar multiple of the other vector.

- The span of \vec{v} and \vec{w} is the set of all their linear combinations.
- If two vectors are *linearly independent* then their span will cover the entire 2D plane.

The *linear combination* of two vectors is defined as a scalar multiple of one

Vectors Linear Independence in 3D

Linearly Independent

Linearly Dependent

Matrices

- We denote the size of a matrix as: $A \in \mathbb{R}^{m \times n}$.
- You can think of it simply as a two dimensional array of numbers.

Matrices Multiplication

is a new vector.

• To multiply a matrix by a vector, the number of columns in the matrix must be equal to the number of rows in the vector. The result of the multiplication

lands).

 x_{in} y_{in}

 Transformation can be though of as a function that takes some input (e.g. coordinates of a vector) and returns some output (e.g. where that vector

$$??? \rightarrow \begin{bmatrix} x_{out} \\ y_{out} \end{bmatrix}$$

- A transformation is linear if:
 - 1. All lines remain parallel and evenly spaced
 - 2. Origin remains fixed

Linear Transformation

Non-Linear Transformation

Source: YouTube 3Blue1Brown

and j land.

- These properties allow us to determine where $ec{v}$ lands if we know where \hat{i}

Source: YouTube 3Blue1Brown

ulletand j land.

$$x \begin{bmatrix} 3 \\ -2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3x + 2y \\ -2x + 1y \end{bmatrix}$$

• This can also be described by a 2×2 matrix:

These properties allow us to determine where $ec{v}$ lands if we know where \hat{i}

What will this transformation do?

$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

$\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

• What will this transformation do?

$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

What will this transformation do?

$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

What will this transformation do?

$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\hat{i} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\hat{i} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

What will this transformation do?

$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bigstar$

$\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

• What will this transformation do?

$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Matrices Composition

- and a column of B.
- **Properties:**
 - 1. Associative: $A_1(A_2A_3) = (A_1A_2)A_3$
 - 2. Not Commutative: $A_1A_2 \neq A_2A_1$

Is the process of combining two or more matrices to form a new matrix.

 The result of the multiplication of two matrices A and B is a new matrix C, where each element of C is obtained by taking the dot product of a row of A

Matrices Composition

$egin{array}{c} \mathcal{X} \ \mathcal{V} \end{array}$ 1 0 0 1 $-1 \\ 0$ Rotation Shear

$\boldsymbol{\mathcal{N}}$ Rotation + Shear

Source: YouTube 3Blue1Brown

Matrices Transpose

- original matrix over its main diagonal.
- matrix, often denoted by A^T .

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

• The transpose of a matrix is a new matrix that is obtained by reflecting the

• It switches the row and column indices of the matrix A by producing another

Matrices **Identity Matrix**

- A special type of matrix that has 1's on the main diagonal and 0's everywhere else.
- If A is any matrix and I is it's identity matrix, then: AI = IA = A.
- Only exists for <u>square matrices</u>! 0

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A$$

$AI = A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Matrices **Diagonal Matrix**

- A matrix in which the entries outside of the main diagonal are all zero.
- Usually refers to square matrices. ightarrow
- Element of the main diagonal can either be zero to non-zero.
- Any identity matrix of any size is a diagonal matrix.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Matrices Trace

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

• The trace of a square matrix is the sum of the elements on its main diagonal.

tr(A) = 1 + 4 + (-2) = 3

changes any area/volume inside our space.

The determinant of a square matrix is the scaling factor by which this matrix

• The determinant of a 2×2 matrix is defined as:

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

• What is the determinant of this matrix?

$$det \begin{pmatrix} 3 & 2 \\ 0 & 2 \end{pmatrix} =$$

$= \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

9

• The determinant of a 2×2 matrix is defined as:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

• What is the determinant of this matrix?

$$det \begin{pmatrix} 3 & 2 \\ 0 & 2 \end{pmatrix} =$$

$3 \times 2 - 0 \times 2 = 6$

The determinant of a matrix can be negative if the matrix represents a transformation that involves a reflection.

invertible.

 $det \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = 0$

• If det(A) is 0 it means that 2D space gets squished to a 1D line and A is not

- Matrices can be used to solve systems of linear equations!
 - $\begin{array}{ccc} 3x + 8y = 5 \\ 4x + 11y = 7 \end{array} \begin{bmatrix} 3 & 8 \\ 4 & 11 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$

Matrices can be used to solve systems of linear equations!

 $\begin{array}{cccc} 3x + 8y = 5 & [3 & 8] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$

• Inverse A^{-1} "undoes" the effects of the original matrix transformation.

• Solving for \vec{v} :

We know:

Then:

 $A\vec{v} = \vec{w}$ $A^{-1}A\vec{v} = A^{-1}\vec{w} \qquad A^{-1}A = I$ $I\vec{v} = A^{-1}\vec{w}$ $\vec{v} = A^{-1} \vec{w}$

- Properties of Inverses:
 - A is *invertible* only if $AA^{-1} = I$
 - A^{-1} exists only if det $A \neq 0$

Matrices Singular Matrix

- A square matrix is *singular* if the matrix has no *inverse*.
- To determine if the matrix is singular we need co compute its determinant.
- A square matrix is singular iff det = 0.

Algebraic interpretation:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $\begin{vmatrix} 2 & | 1 \\ 5 & | \cdot & | 3 \\ 1 & | 5 \end{vmatrix} = 2 \times 1 + 5 \times 3 + 1 \times 5 = 22$ $\begin{vmatrix} 1 \\ 3 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 4 \end{vmatrix} = 1 \times 2 + 3 \times 4 = 14$

Geometric interpretation: 0

$a \cdot b = ||a|| ||b|| \cos \theta$

$$\|a\| = \sqrt{\sum_{i=1}^{n} a_i^2}$$

Geometric interpretation:

$a \cdot b = \|a\| \|b\| \cos \theta$

$$\|a\| = \sqrt{\sum_{i=1}^{n} a_i^2}$$

Geometric interpretation: 0

$a \cdot b = ||a|| ||b|| \cos \theta$

$$\|a\| = \sqrt{\sum_{i=1}^{n} a_i^2}$$

The result of the transformation lies on a number line, not in a 2d space

Useful Links

- <u>3Blue1Brown Essence of Linear Algebra</u>
- Mathematics from Machine Learning Specialisation

Marc Peter Deisenroth "Mathematics for Machine Learning", Chapters 2,3