## $P($ PAL $)$ Workshop

## Contents

- Laws of probabilities
- Random Variables
- Discrete and Continuous spaces
- The Law of Total Probability
- Measures of Central Tendency and Spread
- Distributions


## What is Probability?

- Concerns the study on uncertainty (loosely speaking).
- For certain types of events, we cannot predict the outcome with certainty in advance, e.g. tossing a coin or tossing a die.
- However we know the set of all possible outcomes for these events.
- We would like to use probability to measure the chance of something occurring in an experiment.


## Probabilities as Sets

Mutually Exclusive events

$P(A \cap B)=P(A) \times P(B \mid A)$


Non-mutually Exclusive events

$P(A \mid B)=P(A \cap B) / P(B)$


$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$



S
Complement $P\left(A^{c}\right)=P(S)-P(A)$


## Random Variables <br> The Sample Space $\Omega$

- The set of all possible outcomes of the experiment.
- Let's consider the sample space of two successive coin tosses:

$$
\Omega=\{h h, t t, h t, t h\}
$$

- A subset of the sample space $\Omega$ is called an event $E$.
- Examples:

1. Tossing a die. $\Omega=\{1,2,3,4,5,6\}, E=\{4\}$ describes tossing a four.
2. Tossing a die. $\Omega=\{1,2,3,4,5,6\}, E=\{2,4,6\}$ describes tossing an even number.
3. Tossing a coin twice. $\Omega=\{h h, t t, h t, t h\}, E=\{t t, t h\}$ describes getting tails in the first toss.

## Random Variables

## Power Sets

- Power set - a set of all possible subsets of set $A$.
- Denoted as $\mathscr{P}(A)$. Do not confuse with probability!
- Contains both $\varnothing$ and $A$.
- A size of a power set is $2^{n}$, where $n$ is the cardinality of set $|\mathscr{P}(A)|$.


## Random Variables

## Power Sets

- Example:
- Set $A=\{1,2,3\}$
- Subsets of set $A=\{ \},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}$
- $\mathscr{P}(A)=\{\{ \},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$


## Random Variables

## The Event Space $\mathscr{A}$

- The space of all potential results of the experiment.
- Describes all possible sets of events that can happen.
- For discrete probability distributions, $\mathscr{A}$ is often the power set of $\Omega$.


## Random Variables

## The Probability Measure $P$

- A mapping from each event to the degree of belief that the event will occur.
- The probability of a single event lies in the interval $[0,1]$.
- $P(\Omega)=1$


## Random Variables

## The Target Space $\mathscr{T}$

- A mapping from the sample space to the particular quantities of interest.
- Sounds a bit complicated but in fact this is a very simple idea!


## Random Variables

## Definition

- The term itself is misleading as it is neither random nor is it a variable.
- In fact it as a function!

$$
X: \Omega \rightarrow \mathscr{T}
$$



## Random Variables

## Example

- Consider the set of all possible outcomes of throwing two six-sided dice.
- Then $\Omega$ can be represented as:



- One possible random variable we can define is the sum of the tosses.
- In that case $\mathscr{T}$ will be a set of integers from 2 to 12 .


## Random Variables

## Example



## Random Variables

## Example

- In general:


Where $X^{-1}$ is the subset of $\Omega$ that if we apply $X$ would lead to $S$.
The probability of subset $S$ is given by: $P(S)=P(\omega \in \Omega: X(\omega) \in S)$.

## Random Variables

## Example

- If we assume that the game of dice is fair, i.e., all outcomes are equally likely, then the probability distribution may look like this:


[^0]
## Random Variables

## One more example

- Experiment: Drawing two coins from the bag (with replacement). The bag contains coins from USA(\$) and UK(£).
- Four possible outcomes: $\Omega=\{(\$, \$)(£, £),(\$, £),(£, \$)\}$.
- Assume that there are more $\$$ coins in the bag so the probability of drawing a $£$ coin is 0.3 .
- Event of interest: number of times we draw a $£$.


## Random Variables

## One more example

- Lets define a random variable $X$ that maps $\Omega$ to $\mathscr{T}$, which denotes the number of times we draw $£$ out of the bag.
- From our sample space we can see that we can get $0 £, 1 £$ and $2 £$ s, therefore $\mathscr{T}=\{0,1,2\}$.
- Our random variable $X$ can then be represented like the following:

$$
\begin{aligned}
& X((£, £))=2 \\
& X((£, \$))=1 \\
& X((\$, £))=1 \\
& X((\$, \$))=0
\end{aligned}
$$

## Random Variables

## One more example

- If we assume that draws are independent of each other, the probability can be calculated as follows:

$$
\begin{aligned}
& P(X=2)=P((£, \mathfrak{£}))=P(\mathfrak{£}) \times P(\mathfrak{£})=0.3 \times 0.3=0.09 \\
& P(X=1)=P((£, \$))+P((\$, \mathfrak{£}))=P(\mathfrak{£}) \times P(\$)+P(\$) \times P(\mathfrak{£})=0.3 \times(1-0.3)+(1-0.3) \times 0.3=0.42 \\
& P(X=0)=?
\end{aligned}
$$

## Random Variables

## One more example

- If we assume that draws are independent of each other, the probability can be calculated as follows:

$$
\begin{aligned}
& P(X=2)=P((£, £))=P(\mathfrak{£}) \times P(\mathfrak{£})=0.3 \times 0.3=0.09 \\
& P(X=1)=P((£, \$))+P((\$, \mathfrak{£}))=P(\mathfrak{£}) \times P(\$)+P(\$) \times P(\mathfrak{£})=0.3 \times(1-0.3)+(1-0.3) \times 0.3=0.42 \\
& P(X=0)=P((\$, \$))=P(\$) \times P(\$)=(1-0.3) \times(1-0.3)=0.49
\end{aligned}
$$

## Discrete \& Continuous Probabilities

## Introduction

- It is important to understand the difference between target space types.
- Discrete random variables:
- Variable can take on a discrete set of values.
- Value can be obtained by counting.
- Continuous random variables:
- Variable can take on a continuous set of values.
- Value can be obtained by measuring.


## Discrete \& Continuous Probabilities

## Discrete

- The probability that a random variable $X$ takes a particular value $x \in \mathscr{T}$ is denoted as $P(X=x)$.
- This expression is also called probability mass function.



## Discrete \& Continuous Probabilities

## Discrete

- When the target space is discrete we can imagine the probability distribution of multiple random variables as a multidimensional array of numbers

| $y_{3}$ |
| :---: |
| $y_{2}$ |
| 0.1 |
| $y_{1}$ |
| 0.12 |

- Joint probability is defined as $p(x, y)=P\left(X=x_{i}, Y=y_{j}\right)$
- Marginal probability $p(x)$ represents the probability that $X$ takes the value $x_{i}$ irrespective to the value of $Y$.
- Conditional probability $p(y \mid x)$ will only consider the value of $Y$ for a particular value of $X$.


## Discrete \& Continuous Probabilities

## Continuous

- Target spaces are intervals of the real line $\mathbb{R}$.
- A probability density function is a function whose value at any given point in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be close to that sample.



## The Law of Total Probability

- Suppose $B_{1}, \ldots, B_{n}$ are mutually exclusive and collectively exhaustive events in a sample space. We can then sum/integrate over the set of states of variable $B$ to get a marginal distribution of variable $A$.

$$
P(A)=\sum_{i}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)=\sum_{i}^{n} P\left(A \cap B_{i}\right)
$$

## The Law of Total Probability

- Mutually exclusive - no overlap.
- Collectively exhaustive - cover the whole space.



## The Law of Total Probability

## Example

- Three robots are making parts at a factory. We know that:
- Robot 1 makes $60 \%$ of the parts.
- Robot 2 makes 30\% of the parts.
- Robot 2 makes $10 \%$ of the parts.
- Some parts that are produced are defective:
- Of the parts Robot 1 makes, 7\% are defective.
- Of the parts Robot 2 makes, 15\% are defective.
- Of the parts Robot 3 makes, 30\% are defective.
- What is the probability of a randomly selected part being defective?


## The Law of Total Probability Example

- Three robots are making parts at a factory. We know that:
- Robot 1 makes $60 \%$ of the parts. $P\left(R_{1}\right)=0.6$
- Robot 2 makes $30 \%$ of the parts. $P\left(R_{2}\right)=0.3$
- Robot 2 makes $10 \%$ of the parts. $P\left(R_{3}\right)=0.1$
- Some parts that are produced are defective:
- Of the parts Robot 1 makes, $7 \%$ are defective. $P\left(D \mid R_{1}\right)=0.07$
- Of the parts Robot 2 makes, $15 \%$ are defective. $P\left(D \mid R_{2}\right)=0.15$
- Of the parts Robot 3 makes, $30 \%$ are defective. $P\left(D \mid R_{3}\right)=0.3$
- What is the probability of a randomly selected part being defective? $P(D)=$ ?


## The Law of Total Probability

## Example

$$
\begin{aligned}
P(D) & =P\left(D \mid R_{1}\right) P\left(R_{1}\right)+P\left(D \mid R_{2}\right) P\left(R_{2}\right)+P\left(D \mid R_{3}\right) P\left(R_{3}\right) \\
& =P\left(D \cap R_{1}\right)+P\left(D \cap R_{2}\right)+P\left(D \cap R_{3}\right) \\
& =0.042+0.045+0.03 \\
& =0.117
\end{aligned}
$$

## Expectation and Variance

## Definition

- Expected Value/Mean gives the weighted average of all possible outcomes of the random variable. Is not an expected outcome, but a theoretical mean!

$$
\mathbb{E}(X)=\sum x p(x)
$$

- Variance represents the dispersion, i.e. how far a set of numbers is spread from the mean.

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} p(x)
$$

- Standard Deviation is simply a square root of the variance

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

## Expected Value

## Exercise

- A computer randomly chooses 4 numbers in range [0,10].
- We play a game and try to guess all 4 numbers.
- We pay $3 \$$ for each game.
- If we win we get $10.000 \$$.
- What is out expected profit in a long run?


## Expected Value

## Exercise

- Let $X$ be a random variable representing profit on each play.
- $X \in\{-3,9997\}$.
- The probability of making a correct guess...


## Expected Value

## Exercise

- Let $X$ be a random variable representing profit on each play.
- $X \in\{-3,9997\}$.
- The probability of making a correct guess is $0.1^{4}=0.0001$.

| $X$ | $P(X)$ | $\mathbb{E}(X)$ |
| :---: | :---: | :---: |
| -3 | 0.9999 | $?$ |
| 9997 | 0.0001 |  |

## Expected Value

## Exercise

- Let $X$ be a random variable representing profit on each play.
- $X \in\{-3,9997\}$.
- The probability of making a correct guess is $0.1^{4}=0.0001$.

| $X$ | $P(X)$ | $\mathbb{E}(X)$ |
| :---: | :---: | :---: |
| -3 | 0.9999 |  |
| 9997 | 0.0001 | -2 |

## Expected Value

## One more exercise

- Calculate the expectation for the given random random variable:

| $x$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $p(x)$ | 0.16 | 0.48 | 0.36 |

$$
\mathbb{E}(X)=\sum_{x} x p(x)=0 \times 0.16+1 \times 0.48+2 \times 0.36=1.2
$$

## Expected Value

## One more exercise

- Calculate the mean for the given random random variable:

$$
\begin{array}{|c|c|c|c|}
\hline x & 0 & 1 & 2 \\
\hline p(x) & 0.16 & 0.48 & 0.36 \\
\hline
\end{array}
$$

- Now try to calculate the Variance:

$$
\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} p(x)=?
$$

## Expected Value

## One more exercise

- Calculate the mean for the given random random variable:

$$
\begin{array}{|c|c|c|c|}
\hline x & 0 & 1 & 2 \\
\hline p(x) & 0.16 & 0.48 & 0.36 \\
\hline
\end{array}
$$

- Now try to calculate the Variance:

$$
\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} p(x)=0.48 \quad \sigma_{X}=\sqrt{\operatorname{Var}(X)}=\sqrt{48}
$$

## Covariance

- Covariance of two univariate random variables $X, Y \in \mathbb{R}$ is given by the expected product of their deviations from their respected means.

$$
\operatorname{Cov}(X, Y)=\mathbb{E}_{X, Y}\left[\left(x-\mathbb{E}_{X}[x]\right)\right]\left[\left(y-\mathbb{E}_{Y}[y]\right)\right]
$$


(a) $x$ and $y$ are negatively correlated.

(b) $x$ and $y$ are positively correlated.

## Correlation

- Correlation is the normalized form of Covariance.

$$
\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \in[-1,1]
$$

- Is useful when we want to compare the covariances between different pairs of random variables.


## Distributions

## Bernoulli distribution

- Models the set of possible outcomes for a single experiment.
- $X \in\{0,1\}$
- Parameter $\rho \in[0,1]$ reflects the probability of getting a 1 .
- PMF: $f(x ; p)=\rho^{x}(1-\rho)^{1-x}$
- $\mathbb{E}[X]=p$
- Example: tossing a biased coin.



## Distributions

## Binomial distribution

- A generalization of Bernoulli for $\mathbb{N}$ random variables, i.e. $X \in \mathbb{N}$.
- Parameters $\rho \in[0,1], n \in \mathbb{N}=0,1,2,3, \ldots$
- PMF: $f(x ; p, n)=\binom{n}{k} \rho^{x}(1-\rho)^{n-x}$
- $\mathbb{E}[X]=n \rho$


## Distributions

## Binomial distribution

- Let's have a closer look at the PMF:

$$
f(x ; p, n)=\binom{n}{k} \rho^{x}(1-\rho)^{n-x}
$$

- Combination

$$
\binom{n}{k}=\frac{n!}{n!(n-k)!}
$$

Where $n$ is the total number of possible outcomes,
$k$ is number of items you want to rearrange.

## Useful Links

1. Intelligent Systems Lab YouTube channel
2. jbstatistics
3. 3Blue1Brown Probability of Probabilities
4. https://mml-book.github.io/
5. StatQuest!!!

[^0]:    Total number of microstates: 36

