P(PAL) Workshop

05/12/2022 17:00 Future Technologies Lab

Contents

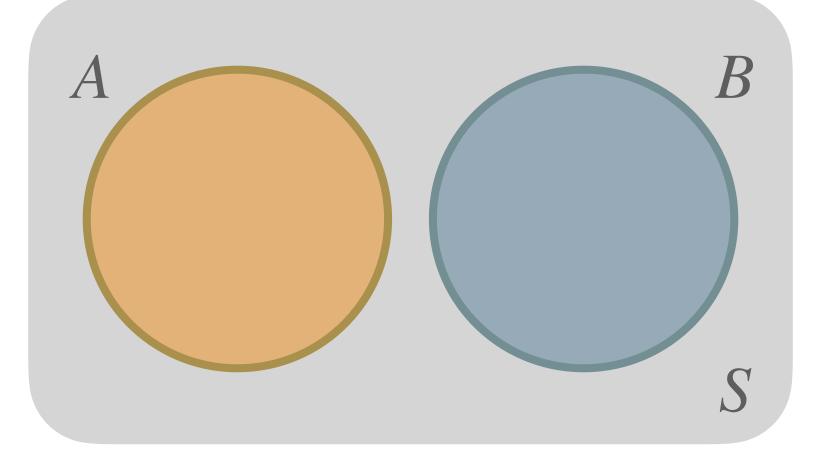
- Laws of probabilities
- Random Variables
- Discrete and Continuous spaces
- The Law of Total Probability
- Measures of Central Tendency and Spread
- Distributions

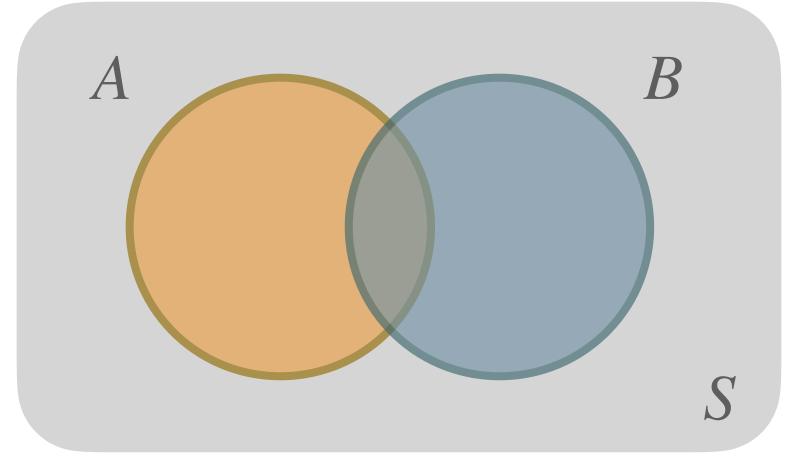
What is Probability?

- Concerns the study on uncertainty (loosely speaking).
- For certain types of events, we cannot predict the outcome with certainty in advance, *e.g. tossing a coin or tossing a die.*
- However we know the set of all possible outcomes for these events.
- We would like to use probability to measure the chance of something occurring in an experiment.

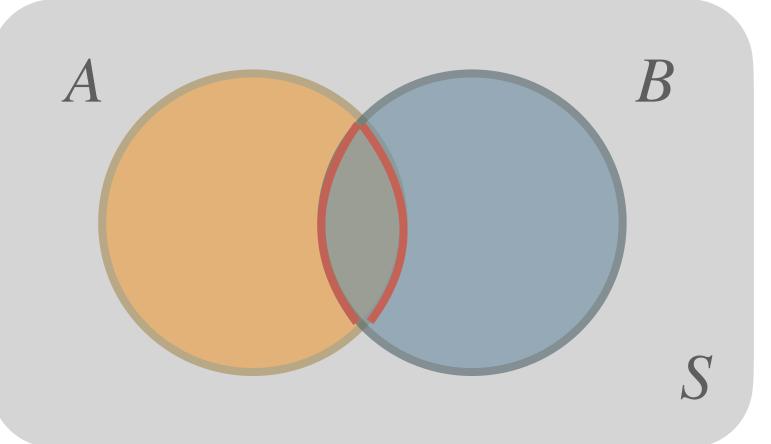
Probabilities as Sets

Mutually Exclusive events





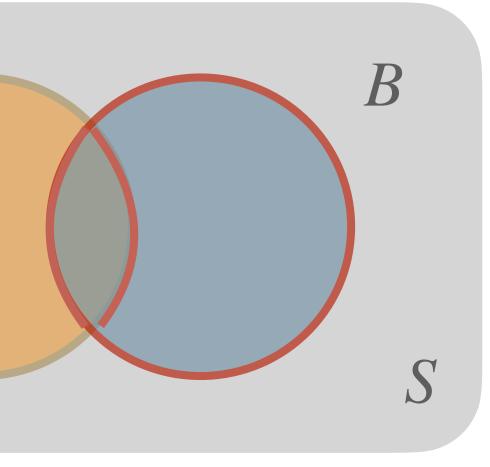
 $P(A \cap B) = P(A) \times P(B | A)$



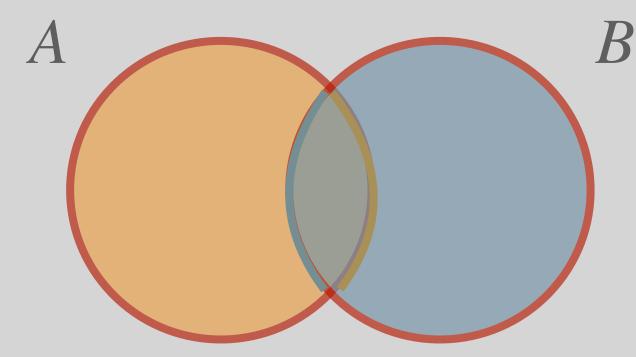
A

Non-mutually Exclusive events

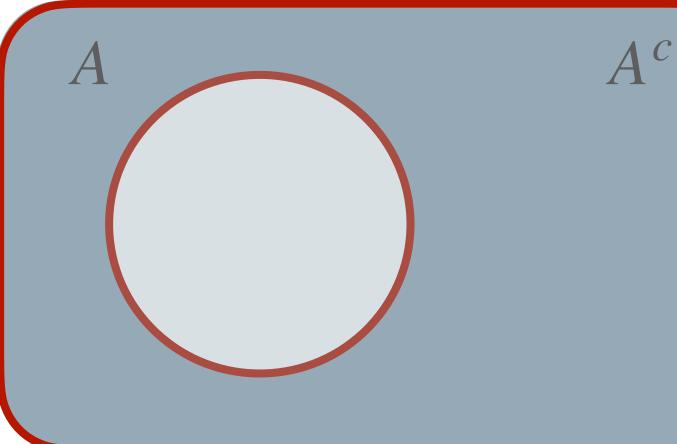
$P(A \mid B) = P(A \cap B)/P(B)$



 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$



Complement $P(A^c) = P(S) - P(A)$



Random Variables The Sample Space Ω

- The set of all possible outcomes of the experiment.
- Let's consider the sample space of two successive coin tosses:

 $\Omega = \{hh, tt, ht, th\}$

- A subset of the sample space Ω is called an event E.
- Examples:
 - 1. Tossing a die. $\Omega = \{1, 2, 3, 4, 5, 6\}, E = \{4\}$ describes tossing a four.
 - 2. Tossing a die. $\Omega = \{1, 2, 3, 4, 5, 6\}, E = \{2, 4, 6\}$ describes tossing an even number.

3. Tossing a coin twice. $\Omega = \{hh, tt, ht, th\}, E = \{tt, th\}$ describes getting tails in the first toss.

Random Variables Power Sets

- Power set a set of all possible subsets of set A.
- Denoted as $\mathscr{P}(A)$. Do not confuse with probability!
- Contains both \emptyset and A.
- A size of a power set is 2^n , where *n* is the cardinality of set $|\mathscr{P}(A)|$.

Random Variables Power Sets

- Example:
 - Set $A = \{1, 2, 3\}$
 - Subsets of set $A = \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}$
 - $\mathcal{P}(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

 $\{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}$ $2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

Random Variables The Event Space *A*

- The space of all potential results of the experiment.
- Describes all possible sets of events that can happen.
- For discrete probability distributions, \mathscr{A} is often the power set of Ω .

Random Variables The Probability Measure *P*

- The probability of a single event lies in the interval [0,1].
- $P(\Omega) = 1$

• A mapping from each event to the degree of belief that the event will occur.

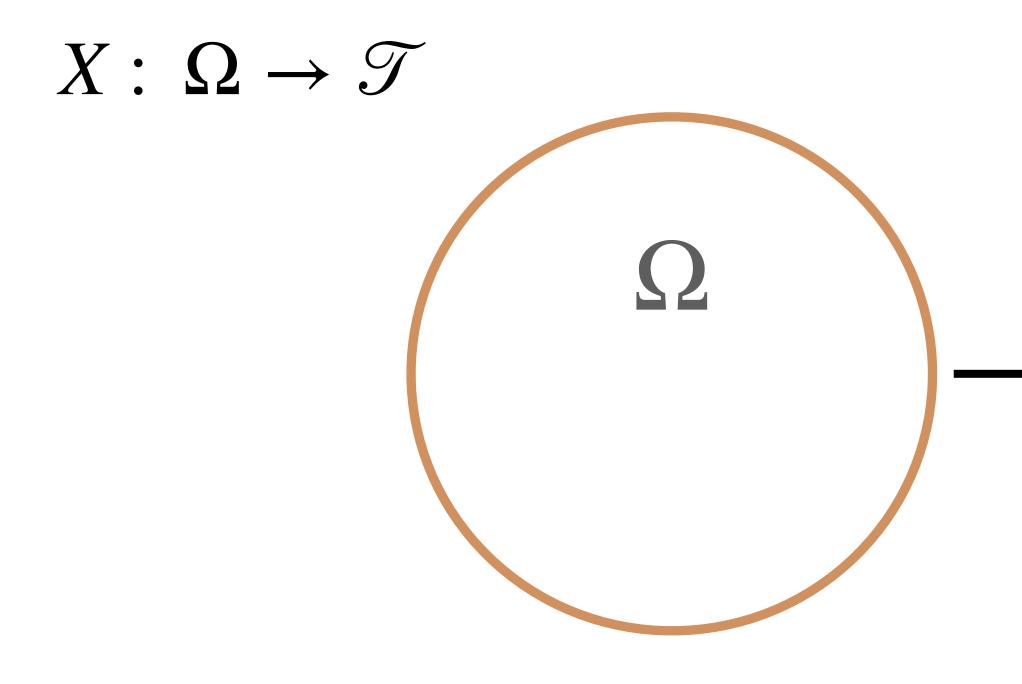
Random Variables The Target Space \mathcal{T}

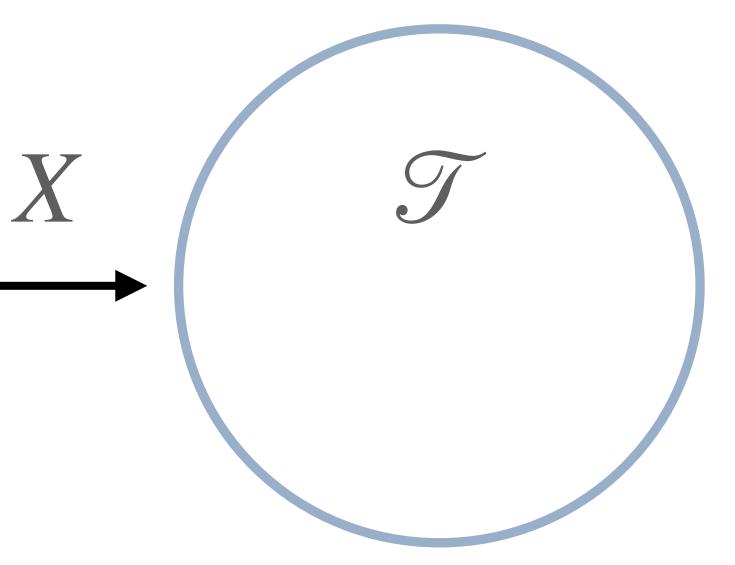
- Sounds a bit complicated but in fact this is a very simple idea!

• A mapping from the sample space to the particular quantities of interest.

Random Variables Definition

- The term itself is misleading as it is neither random nor is it a variable.
- In fact it as a function!

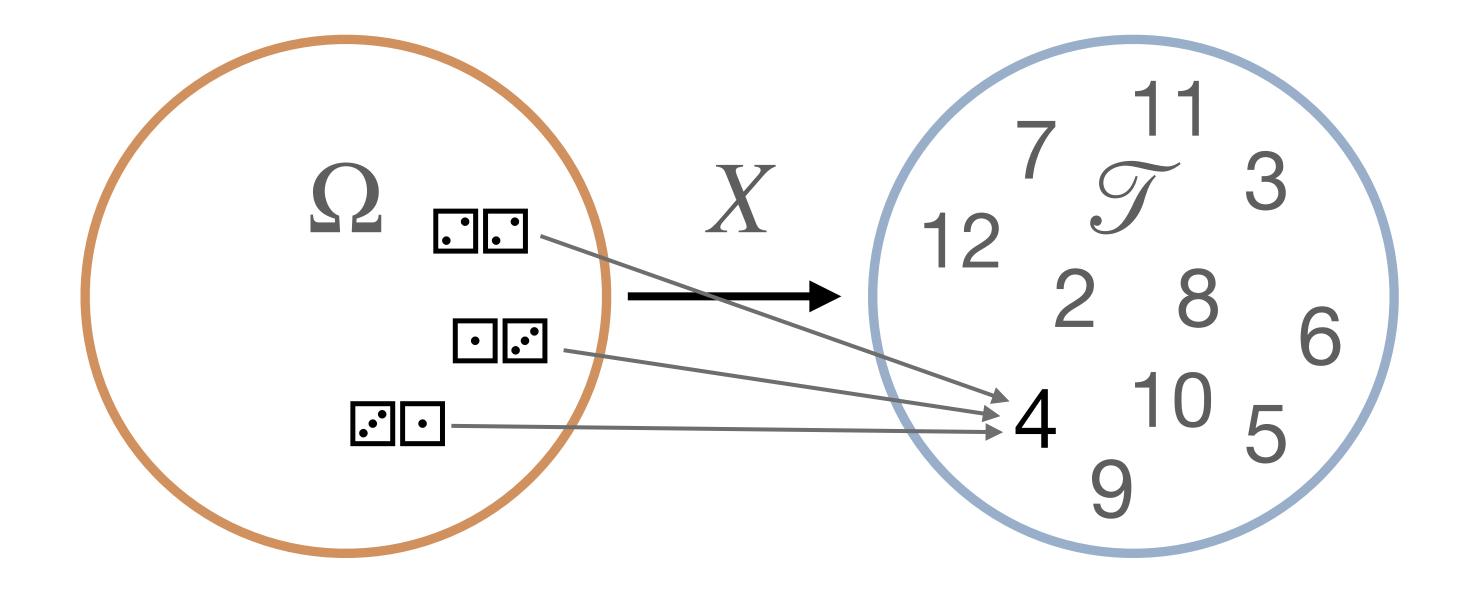




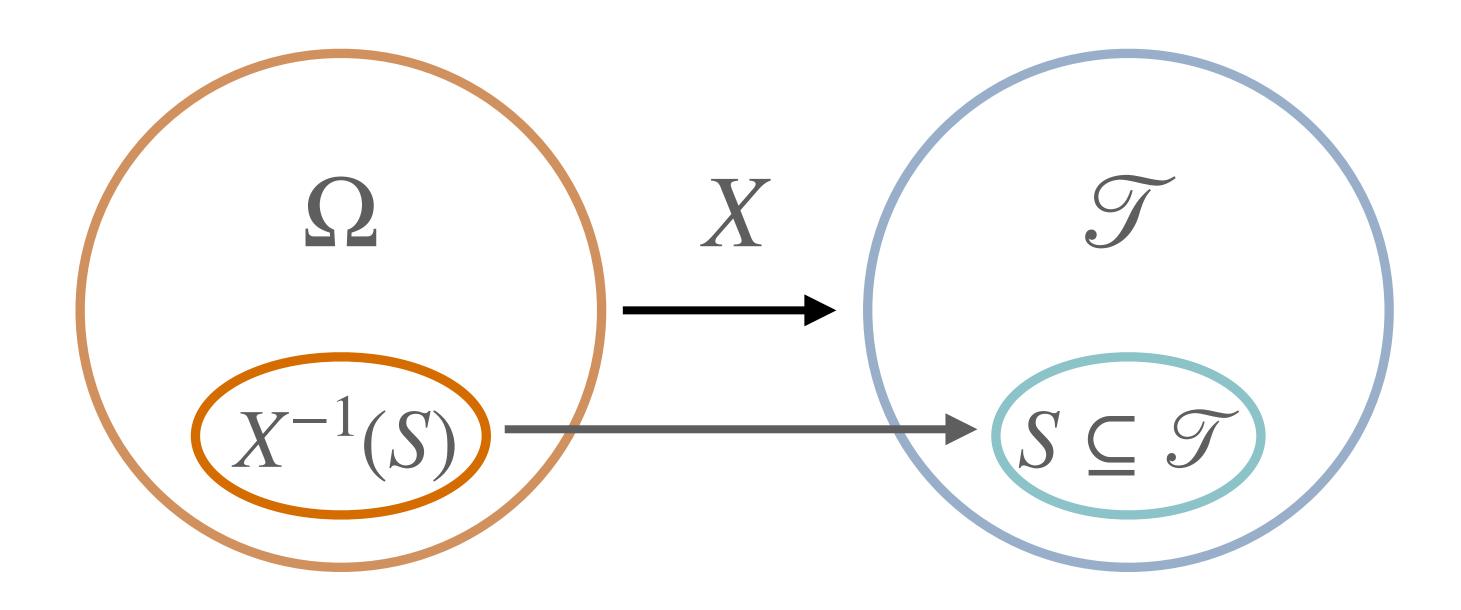
- Then (2) can be represented as:

- One possible random variable we can define is the sum of the tosses.
- In that case \mathcal{T} will be a set of integers from 2 to 12.

Consider the set of all possible outcomes of throwing two six-sided dice.

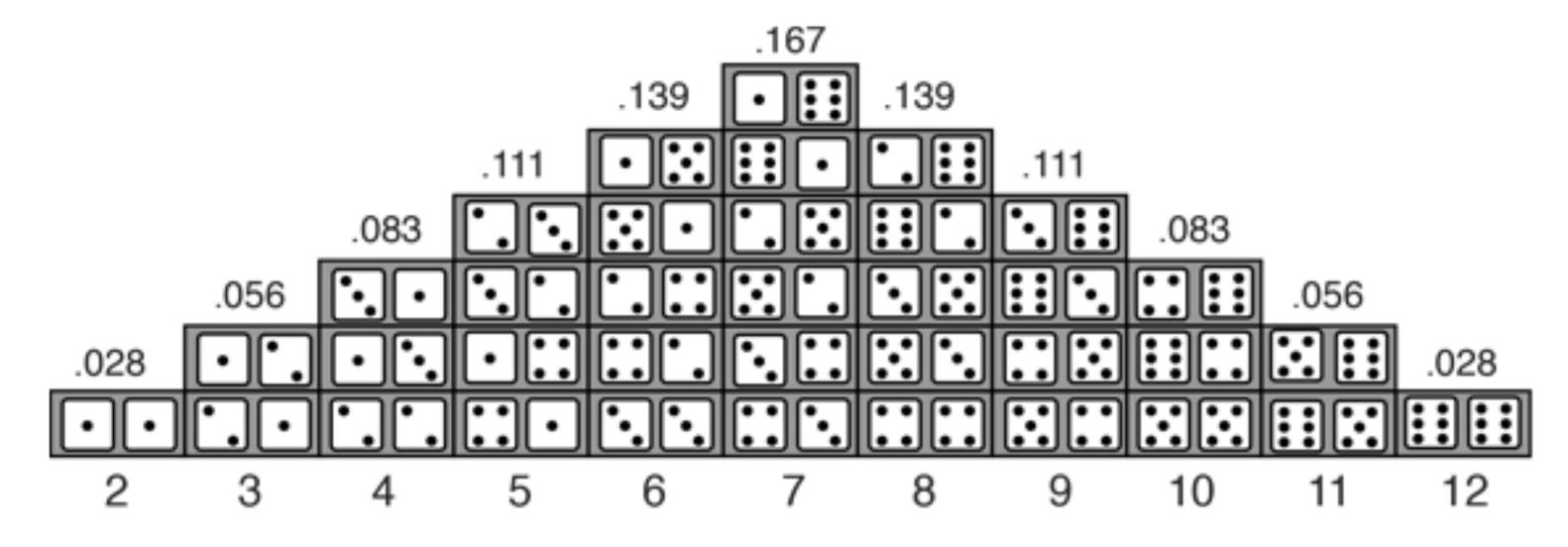


• In general:



Where X^{-1} is the subset of Ω that if we apply X would lead to S. The probability of subset S is given by: $P(S) = P(\omega \in \Omega : X(\omega) \in S)$.

then the probability distribution may look like this:



Total number of microstates: 36

• If we assume that the game of dice is fair, i.e., all outcomes are equally likely,

- Experiment: Drawing two coins from the bag (with replacement). The bag contains coins from USA(\$) and UK(£).
- Four possible outcomes: $\Omega = \{(\$, \$)(\pounds, \pounds), (\$, \pounds), (\pounds, \$)\}.$
- Assume that there are more \$ coins in the bag so the probability of drawing a £ coin is 0.3.
- Event of interest: number of times we draw a £.

- draw £ out of the bag.
- Our random variable X can then be represented like the following:

 $X((\pounds, \pounds)) = 2$ $X((\pounds, \$)) = 1$ $X((\$, \pounds)) = 1$ X((\$,\$)) = 0

• Lets define a random variable X that maps Ω to \mathcal{T} , which denotes the number of times we • From our sample space we can see that we can get 0£, 1£ and 2£s, therefore $\mathcal{T} = \{0, 1, 2\}$.

• If we assume that draws are independent of each other, the probability can be calculated as follows: $P(X = 2) = P((\pounds, \pounds)) = P(\pounds) \times P(\pounds) = 0.3 \times 0.3 = 0.09$ $P(X = 1) = P((\pounds, \$)) + P((\$, \pounds)) = P(\pounds) \times P(\$) + P(\$) \times P(\pounds) = 0.3 \times (1 - 0.3) + (1 - 0.3) \times 0.3 = 0.42$ P(X = 0) = ?

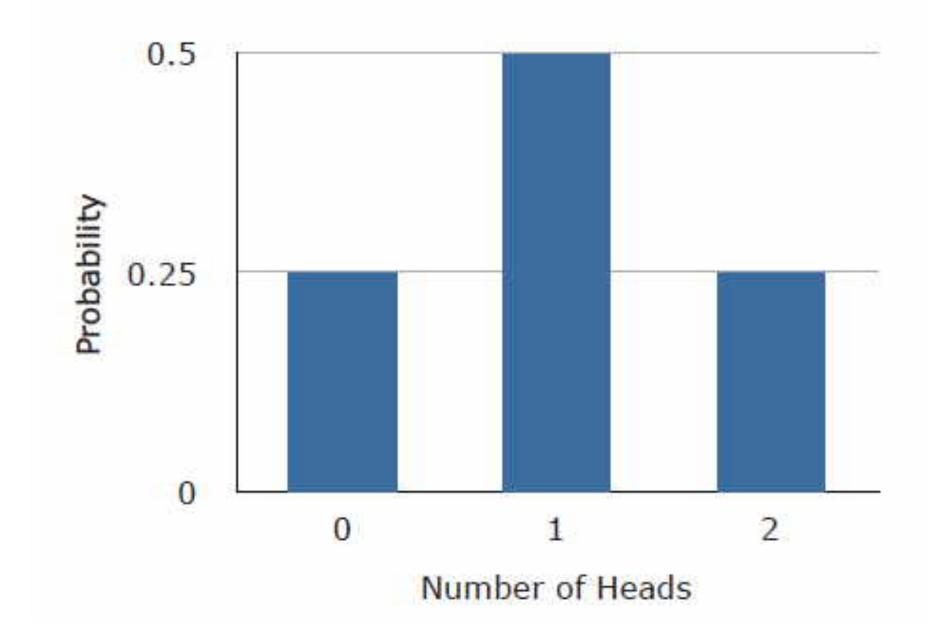
• If we assume that draws are independent of each other, the probability can be calculated as follows: $P(X = 2) = P((\pounds, \pounds)) = P(\pounds) \times P(\pounds) = 0.3 \times 0.3 = 0.09$ $P(X = 1) = P((\pounds, \$)) + P((\$, \pounds)) = P(\pounds) \times P(\$) + P(\$) \times P(\pounds) = 0.3 \times (1 - 0.3) + (1 - 0.3) \times 0.3 = 0.42$ $P(X = 0) = P((\$, \$)) = P(\$) \times P(\$) = (1 - 0.3) \times (1 - 0.3) = 0.49$

Discrete & Continuous Probabilities Introduction

- It is important to understand the difference between target space types.
- Discrete random variables:
 - Variable can take on a *discrete* set of values.
 - Value can be obtained by counting.
- Continuous random variables:
 - Variable can take on a continuous set of values.
 - Value can be obtained by measuring.

Discrete & Continuous Probabilities Discrete

- denoted as P(X = x).
- This expression is also called probability mass function.



• The probability that a random variable X takes a particular value $x \in \mathcal{T}$ is

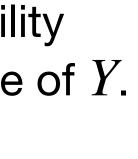
P(X = 0) = 0.25P(X = 1) = 0.5P(X = 2) = 0.25

Discrete & Continuous Probabilities Discrete

of multiple random variables as a multidimensional array of numbers

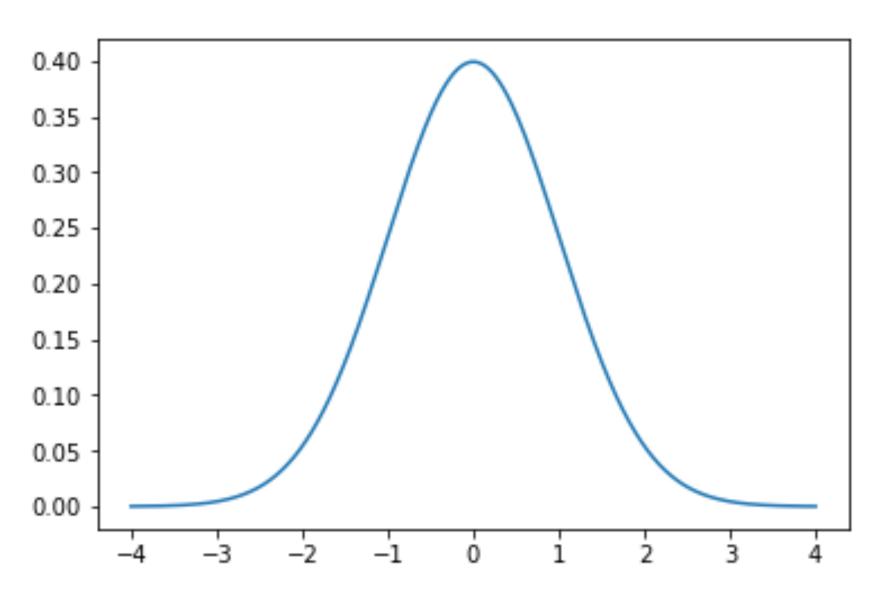
<i>y</i> ₃	0.1	0.07	0.06	0.03	0.1	• Joint probability is defined as $p(x, y) = P(X = x_i, Y = y_j)$
<i>y</i> ₂	0.12	0.09	0.02	0.01	0.05	• Marginal probability $p(x)$ represents the probability that X takes the value x_i irrespective to the value o
<i>y</i> ₁	0.18	0.01	0.11	0.02	0.03	• Conditional probability $p(y x)$ will only consider the value of Y for a particular value of X.
L	x_1	<i>x</i> ₂	<i>x</i> ₃	x ₄	<i>x</i> ₅	

When the target space is discrete we can imagine the probability distribution



Discrete & Continuous Probabilities Continuous

- Target spaces are intervals of the real line \mathbb{R} .
- A probability density function is a function whose value at any given point in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be close to that sample.



The Law of Total Probability

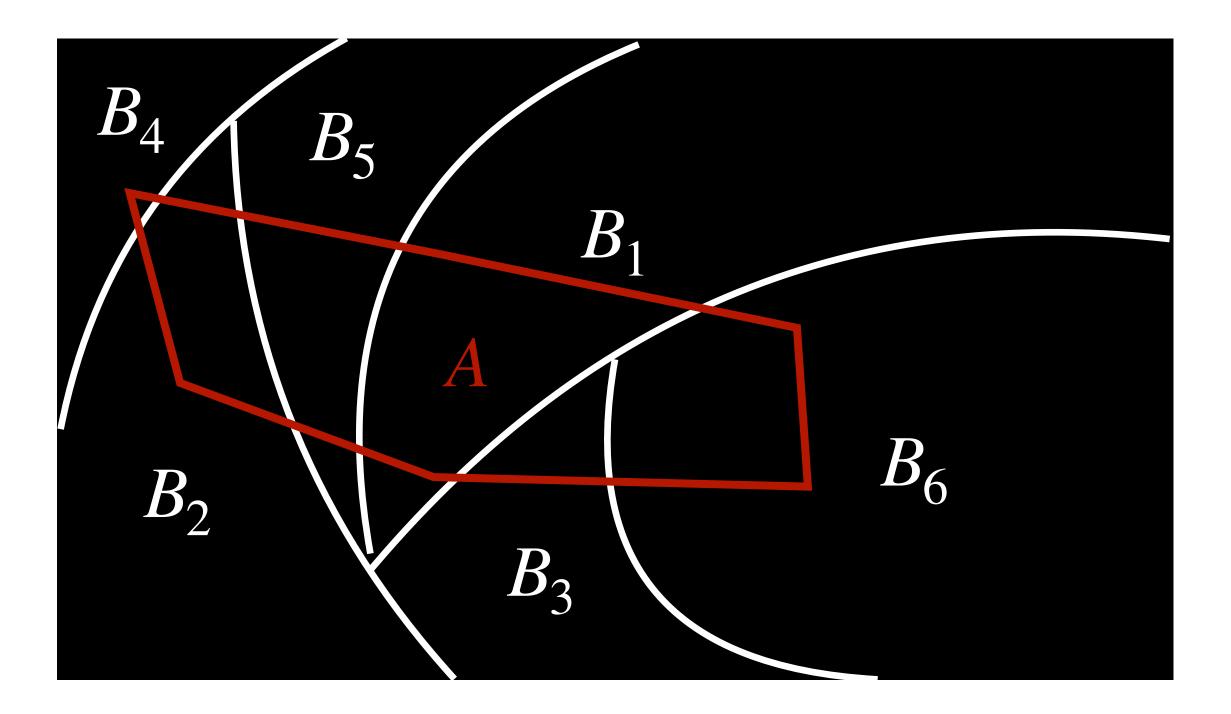
 Suppose B₁,..., B_n are mutually exclusive and collectively exhaustive events in a sample space. We can then sum/integrate over the set of states of variable B to get a *marginal* distribution of variable A.

$$P(A) = \sum_{i}^{n} P(A | B_i) P(B_i) =$$

$$\sum_{i}^{n} P(A \cap B_{i})$$

The Law of Total Probability

- Mutually exclusive no overlap.
- Collectively exhaustive cover the whole space.



The Law of Total Probability Example

- Three robots are making parts at a factory. We know that:
 - Robot 1 makes 60% of the parts.
 - Robot 2 makes 30% of the parts.
 - Robot 2 makes 10% of the parts.
- Some parts that are produced are defective:
 - Of the parts Robot 1 makes, 7% are defective.
 - Of the parts Robot 2 makes, 15% are defective.
 - Of the parts Robot 3 makes, 30% are defective.
- What is the probability of a randomly selected part being defective?

The Law of Total Probability Example

- Three robots are making parts at a factory. We know that:
 - Robot 1 makes 60% of the parts. $P(R_1) = 0.6$
 - Robot 2 makes 30% of the parts. $P(R_2) = 0.3$
 - Robot 2 makes 10% of the parts. $P(R_3) = 0.1$
- Some parts that are produced are defective:
 - Of the parts Robot 1 makes, 7% are defective. $P(D | R_1) = 0.07$
 - Of the parts Robot 2 makes, 15% are defective. $P(D | R_2) = 0.15$
 - Of the parts Robot 3 makes, 30% are defective. $P(D | R_3) = 0.3$
- What is the probability of a randomly selected part being defective? P(D) = ?

The Law of Total Probability Example

 $P(D) = P(D | R_1)P(R_1) + P(D | R_2)P(R_2) + P(D | R_3)P(R_3)$ $= P(D \cap R_1) + P(D \cap R_2) + P(D \cap R_3)$ = 0.042 + 0.045 + 0.03= 0.117

Expectation and Variance Definition

variable. Is not an expected outcome, but a theoretical mean!

$$\mathbb{E}(X) = \sum x p(x)$$

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x} (x - \mu)^2$$

• Standard Deviation is simply a square root of the variance

$$\sigma_X = \sqrt{Var(X)}$$

• Expected Value/Mean gives the weighted average of all possible outcomes of the random

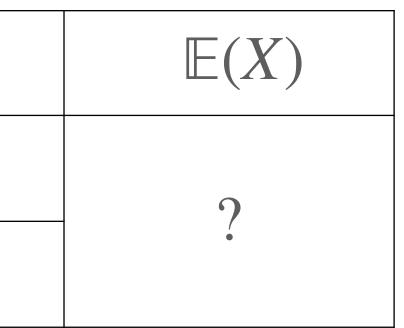
Variance represents the dispersion, i.e. how far a set of numbers is spread from the mean. $(x)^2 p(x)$

- A computer randomly chooses 4 numbers in range [0,10].
- We play a game and try to guess all 4 numbers.
- We pay 3\$ for each game.
- If we win we get 10.000\$.
- What is out expected profit in a long run?

- Let X be a random variable representing profit on each play.
- $X \in \{-3, 9997\}.$
- The probability of making a correct guess...

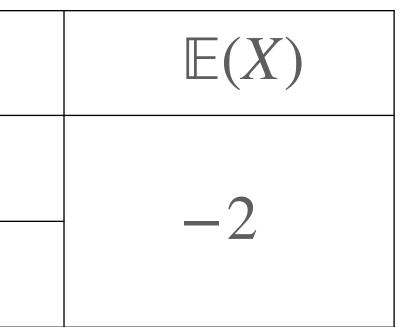
- Let X be a random variable representing profit on each play.
- $X \in \{-3, 9997\}.$
- The probability of making a correct guess is $0.1^4 = 0.0001$.

X	P(X)
-3	0.9999
9997	0.0001



- Let X be a random variable representing profit on each play.
- $X \in \{-3, 9997\}$.
- The probability of making a correct guess is $0.1^4 = 0.0001$.

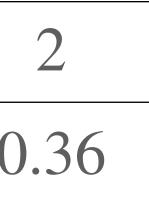
X	P(X)
-3	0.9999
9997	0.0001



Expected Value One more exercise

Calculate the expectation for the given random random variable:

X	0	1	
p(x)	0.16	0.48	C
$\mathbb{E}(X) =$	$\sum_{x} x p(x)$	$x) = 0 \times$	0.1



$16 + 1 \times 0.48 + 2 \times 0.36 = 1.2$

Expected Value One more exercise

• Calculate the mean for the given random random variable:

X	0	1	
p(x)	0.16	0.48	(

$$E(X) = \sum_{x} x p(x) = 0 \times 0.1$$

• Now try to calculate the Variance:

$$Var(X) = \sum_{x} (x - \mu)^2 p(x) = ?$$

$16 + 1 \times 0.48 + 2 \times 0.36 = 1.2$

Expected Value One more exercise

• Calculate the mean for the given random random variable:

X	0	1	
p(x)	0.16	0.48	(

$$E(X) = \sum_{x} x p(x) = 0 \times 0.1$$

• Now try to calculate the Variance:

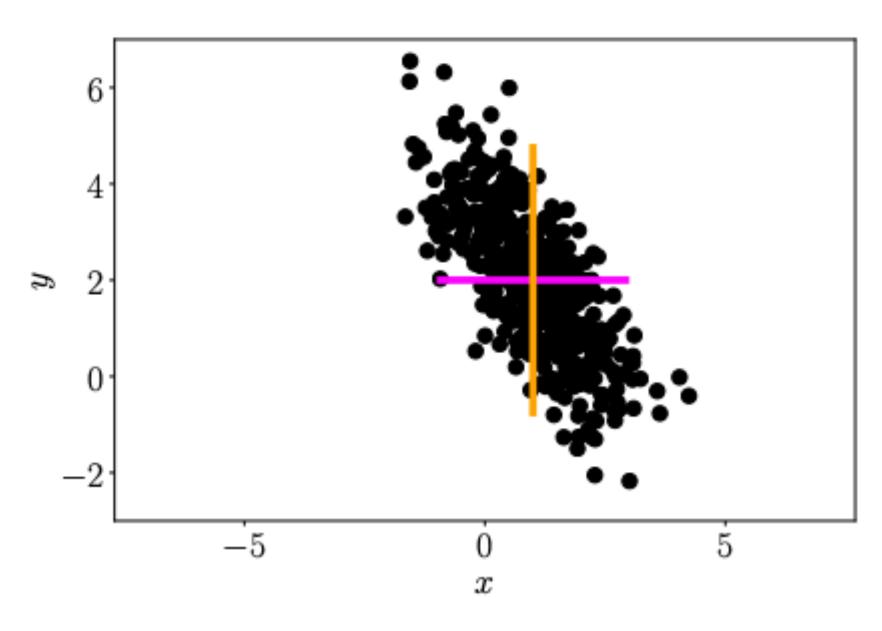
$$Var(X) = \sum_{x} (x - \mu)^2 p(x) = 0.48$$
 $\sigma_X = \sqrt{Var(X)} = \sqrt{48}$

$16 + 1 \times 0.48 + 2 \times 0.36 = 1.2$

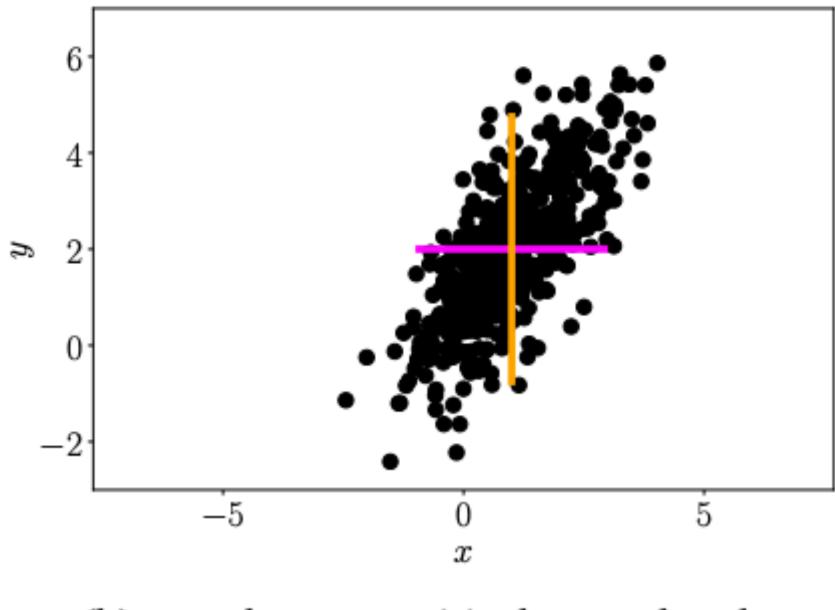
Covariance

• Covariance of two univariate random variables $X, Y \in \mathbb{R}$ is given by the expected product of their deviations from their respected means.

$$Cov(X, Y) = \mathbb{E}_{X, Y}[(x - \mathbb{E}_X[x])][(y - \mathbb{E}_Y[y])]$$



(a) x and y are negatively correlated.



(b) x and y are positively correlated.

Correlation

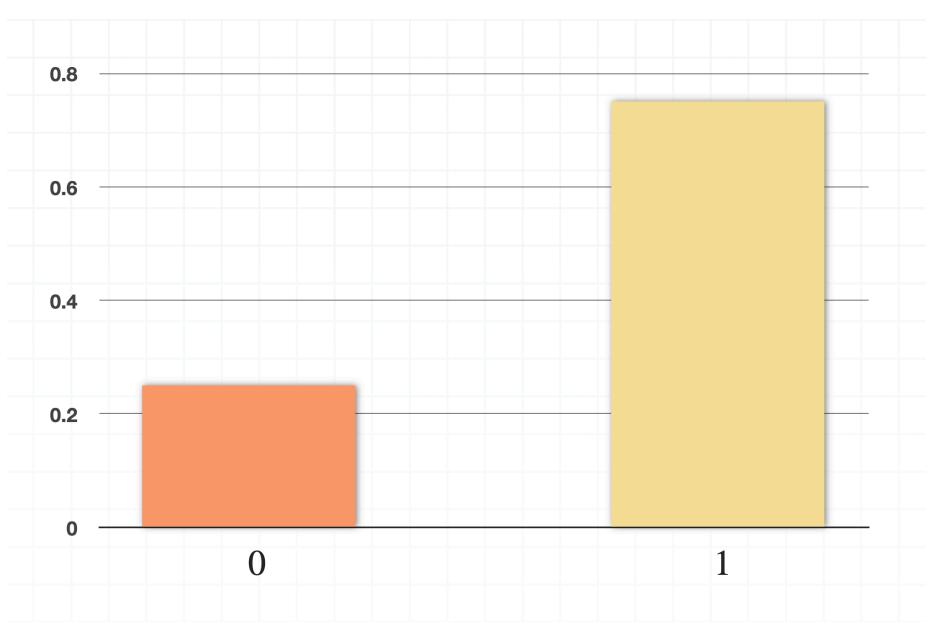
Correlation is the normalized form of Covariance.

$$Corr[X, Y] = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

- Is useful when we want to compare the covariances between different pairs of random variables.
- $\frac{1}{2} \in [-1,1]$

Distributions **Bernoulli distribution**

- Models the set of possible outcomes for a single experiment.
- $X \in \{0,1\}$
- Parameter $\rho \in [0,1]$ reflects the probability of getting a 1.
- PMF: $f(x;p) = \rho^{x}(1-\rho)^{1-x}$
- $\mathbb{E}[X] = p$
- Example: tossing a biased coin.



Distributions **Binomial distribution**

- A generalization of Bernoulli for \mathbb{N} random variables, i.e. $X \in \mathbb{N}$.
- Parameters $\rho \in [0,1], n \in \mathbb{N} = 0,1,2,3,...$
- PMF: $f(x; p, n) = {\binom{n}{k}} \rho^x (1 \rho)^{n-x}$
- $||X| = n\rho$

Distributions Binomial distribution

• Let's have a closer look at the PMF:

$$f(x; p, n) = \binom{n}{k} \rho^{x} (1 - \rho)^{n-x}$$

Combination

$$\binom{n}{k} = \frac{n!}{n!(n-k)!}$$

Where *n* is the total number of possible outcomes,

k is number of items you want to rearrange.

Useful Links

- Intelligent Systems Lab YouTube channel 1.
- <u>ibstatistics</u> 2.
- 3. <u>3Blue1Brown Probability of Probabilities</u>
- https://mml-book.github.io/ 4.
- 5. StatQuest!!!