

2020

Crap Guide to Unity

VERSION 0.1, WORKING IN PROGRESS

ANSON WONG

This is not a guide on how to use Unity, but a simple guide of what Unity can offer. Mainly includes

commonly used classes, methods, etc with a summary of what it can do. It is a nice way to introduce

common components and methods instead of drilling through Unity’s official documentation and

getting confused.

Please always refer back to the official documentation for method parameters

https://docs.unity3d.com/Manual/index.html

Contents
Classes ... 2

C# .. 2

Primitive types .. 2

Array and List .. 2

Unity .. 2

GameObject .. 2

Vector3, Vector2 ... 4

Quaternion .. 5

MonoBehaviour .. 6

Methods .. 6

Common Components .. 7

Transform .. 7

Classes

C#

Primitive types
String

Char

Int

Float

Double

Null

Array and List
<Type>[]

Typical fixed length array

Methods Description

.Length Get size of array

List<Type>

Similar to Java’s ArrayList

Methods Description

.Add() add parameter to list

.Contains() Check if parameter in in list

.Find() Find an element in the list
*Personally, I never get this to work correctly, so I normally just
write a while loop

.Count Get size of array

Unity

GameObject
Everything in the scene (and Hierarchy) is a GameObject, for example the cube, plane, camera, light,

empty GameObjects, etc.

You can create an empty GameObject by right clicking in the Hierarchy and create one. They will

appear as nothing other than axis for their transform components

*I used them to either get a point in the world or as a Parent of something with multiple

GameObjects attatched

Methods Description

.activeSelf Check if the gameObject1 itself is active

.SetActive() Set .activeSelf to parameter

.tag Get tag of the gameObject
*tag is another way to identify a type/ group of a GameObject, for
example, Player, Enemy, Wall, etc

.CompareTag() Compares the current gameObject’s tag to the parameter
*mostly used for identifying what GameObject collided and act
differently

.transform Get the transform component

.GetComponent
<ComponentType>()

Return a certain component from gameObject
If there is no said component
Return Null instead

.TryGetComponent
(out ComponentType
variableName)

Return Boolean of if the gameObject has said component
A Safer way of getting a component from a GameObject

Example:
If (gameObject.TryGetComponent(out TestComponent x)
{
 x.DoSomething();
} else {
 //it cannot find the component
 Debug.LogError(“Can not find component”);
}

Static Methods Description

GameObject
.FindGameObjectWithTag()

Return a GameObject in the scene with the tag specified in the
parameter

There is also FindGameObjectsWithTag() which returns an array of
GameObjects

FindGameObjectOfType
<ComponentType>()

Return a GameObject in the scene with the Type specified
*best for finding a specific script/ component in the scene that
you can’t drag and drop in the inspector
*best used in Awake() or Start() to set variables that are
components in the scene, eg. Main Camera

There is also FindGameObjectsOfType() which returns an array of
GameObjects

Destroy() Destroys the GameObject specified in the parameter

Eg.
Destroy((GameObject) g, (float) 5f);

It destroys the GameObject g after 5 seconds

*read documentations for more parameters

1 Lower case gameObject to signify it’s variable, Upper case GameObject to signify the class GameObject

Instantiate() Instantiate the GameObject specified in the parameter

Eg.
Instantiate((GameObject) g, (Vector3) v, (Quaternion) q)

 Creates the GameObject g at the location v with a rotation of q
*q is often Quaternion.identity for no rotations

*read documentations for more parameters

Vector3, Vector2
It is basically a tuple that stores 3 or 2 floats respective. It is normally used for representing a

position and/ or direction. The values are stored in this order (x ,y ,z) for vector3 and (x, y) for

vector2.

Vector3 and Vector2 shares a lot of similar methods, best to double check the documentation for

more details

Properties Description

.magnitude Get the magnitude/ length of the Vector
Eg. a Vector2 (3,4) has a magnitude of 5.

.normalized Get the normalized Vector, where the Vector is in the pointing the
same direction but scaled down to have a magnitude of 1
Eg. A Vector2 (-4,-4) will be normalised to (~-0.7,~-0.7)

Static Properties

.right, .up, .forward Get the world axis x, y, z with magnitude of 1 respectively

Static Methods Description

.Angle() Return the angle in degrees between the 2 Vectors
*it is a float, not a Quaternion
*you can also use .SignedAngle()

.MoveTowards() Moving a Vector to a target Vector in a constant speed

Eg. Moving a GameObject to position targetVector

Vector3 targetVector;
Float speed;

Void FixedUpdate(){
transform.position = Vector3.MoveTowards(transform.position,
targetVector, speed*Time.fixedDeltaTime);

.Slerp() “Spherically interpolates between two vectors.” – Unity
Basically it allows you to smoothly move a Vector to a new Vector

Eg. Have a GameObject to face in the direction of the targetVector

Vector3 targetVector;
Float speed;

Void FixedUpdate(){
transform.position = Vector3.Slerp(transform.position,
targetVector, speed*Time.fixedDeltaTime);

Quaternion
This handles the rotation.

Do not modify the x, y, z, w values directly unless you understand Quaternion

It can also be used as a rotation matrix.

Eg.

Quaternion q;

Vector3 v;

q*v allows the rotation q to v

Properties Description

.eularAngles Get a Vector3 representation of the Quaternion in degrees

Static Methods Description

.Angle() Return the angle between the 2 Quaternion

.AngleAxis() Return a new quaternion which rotates parameter angle degrees
around parameter axis

Eg.
Quaternion.AngleAxis(30f, Vector3.Up)
Retruns a Quaternion with a rotation of 30 degrees in the y azis

Eular() Return a new quaternion based on the parameters of the angle on
the x, y, z axis

.Slerp() Same as the one for Vector3 but for rotation

MonoBehaviour
All Unity scripts derives from this script

Diagram of the order of methods calls:

https://docs.unity3d.com/560/Documentation/uploads/Main/monobehaviour_flowchart.svg

Methods
There are methods from the MonoBehaviour class that you can define

Methods Description

Start() This method gets called once before the first frame’s Update()
gets called

Awake() This method gets called once when the script instance gets loaded

Aka, first method to be called, earlier than start

Update() Method gets called on every frame

FixedUpdate() Method gets called on a fixed time
By default, it gets called once every 0.02 of a second
You can change that in the settings

LateUpdate() Method gets called on every frame, but after all the Update
methods have been called

OnCollisionEnter()
OnCollisionStay()
OnCollisionExit()

These method handle collisions and are called at different
moments.
They require a collider to be attached to them with the is trigger
box unticked.

Enter: called once when the 2 objects collide
Stay: called every frame when the 2 objects remain in contact
Exit: called once when the 2 objects stopped being in contact

These methods also have a 2D counter part to them and only
works if you use the 2D colliders

You can also modify what objects can collide with each other by
assigning it a layer and modify the layer’s behaviour in the settings

OnTriggerEnter()
OnTriggerStay()
OnTriggerExit()

Same as the OnCollision counterparts, but they require a collider
to be attached to them with the is trigger box ticked.

It allows objects to pass through the trigger collider

Only works for the for collision between it and a collider object
that is not a trigger

OnEnable() Method gets called once when the gameObject gets enabled

OnDisable() Method gets called once when the gameObject gets disabled

https://docs.unity3d.com/560/Documentation/uploads/Main/monobehaviour_flowchart.svg

Common Components

Transform
This component handles with the position, rotation and scale of the object. All GameObjects in the

scene has this component.

Methods Description

