Mathematical Concepts Revision Week3

Basic Algebra

Simplifying expressions
e.g. $\quad 5 a+2 b+2 a-3 b$

$$
=7 a-b
$$

e.g. $3 b \times 4 b$

$$
=12 b^{2}
$$

e.g. Find $x \rightarrow 3 x=-12$

$$
x=-4
$$

Rule

$$
a^{x} \times a^{y}=a^{x+y}
$$

$$
\text { e.g. } \quad \begin{aligned}
a^{3} \times a^{5} & =a^{3+5} \\
& =a^{8}
\end{aligned}
$$

$$
\frac{a^{x}}{a^{y}}=a^{x-y}
$$

egg.

$$
\frac{a^{5}}{a^{4}}=a
$$

Rule
(power rule)

$$
\left(a^{x}\right)^{y}=a^{x y}
$$

e.g. $\left(a^{3}\right)^{4}=a^{12}$

Rule

$$
(\operatorname{sh})^{x}=a^{x} b^{x}
$$

|

$$
\text { e.g }(x y)^{4}=x^{4} y^{4}
$$

Rule
(power of a faction mice)

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

$$
\text { eeg. }\left(\frac{a}{b}\right)^{4}=\frac{a^{4}}{b^{4}}
$$

$$
=1
$$

Rule

$$
a^{-x}=\frac{1}{a^{x}}
$$

eeg. $\quad a^{5} \times a^{-8}=$

$$
\begin{aligned}
& a^{5} \times a= \\
& a^{5} \times \frac{1}{a^{8}}=\frac{a^{5}}{a^{8}} a^{-3}
\end{aligned}
$$

Rule

$$
a^{\frac{x}{y}}=\sqrt[y]{a^{x}}
$$

eeg. $a^{\frac{5}{2}}=\sqrt{a^{5}}$

$$
a^{5 / 4}=\sqrt[4]{a^{5}}
$$

Expanding Brackets

example 1:

$$
\begin{aligned}
& x^{2}(x+2) \\
& x^{2} \times x^{1}=x^{2+1}=x^{3} \\
& x^{2} \times 2=2 x^{2}=x^{3}+2 x^{2}
\end{aligned}
$$

example 2:

$$
\begin{aligned}
& (x+2)(x+3) \\
& x^{2}+3 x+2 x+6 \\
= & x^{2}+5 x+6
\end{aligned}
$$

example 3:

$$
\begin{aligned}
& (x+y)(x-y) \\
= & x^{2}-y^{2} \quad \\
\quad & x^{2}-x y+x y-y^{2} \\
= & x^{2}-y^{2}
\end{aligned}
$$

example 4:

$$
\begin{aligned}
& (3(x+2)+4)(x+1) \\
& (3 x+6+4)(x+1) \\
& (3 x+10)(x+1) \\
& 3 x^{2}+3 x+10 x+10 \\
& =3 x^{2}+13 x+10
\end{aligned}
$$

example S :

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x^{2}+x y+x y+y^{2} \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ecg. } \frac{x}{x+2}+\frac{1}{(x+2)^{2}} \text {. Rule } \\
& \text { denominators } \\
& \text { must be equal, } \\
& \text { then we add } \\
& \frac{x}{x+2} \times \frac{x+2}{x+2}=\frac{x(x+2)}{(x+2)^{2}} \\
& \frac{x(x+2)+1}{(x+2)^{2}}=\frac{x^{2}+2 x+1}{(x+2)^{2}} \\
& \text { ecg. } \\
& \frac{x(x+1)}{3}+\frac{2(x+2)}{1}+\frac{4}{1}= \\
& \frac{x(x+1)}{3}+\frac{3(2(x+2))}{3}+\frac{4 \times 3}{3} \\
& x(x+1)+\frac{6(x+2)}{3}+12 \\
& 3=\frac{x^{2}+x+6 x+24}{3} \\
& \text { cahoot }=x^{2}+7 x+24
\end{aligned}
$$

$$
\mathbb{Z}=\ln \text { teger }
$$

- Natural number - the positive integers from 1 onwards.

Denoted as $|\bar{N}|$

$$
\text { egg. } 1,2,3,5,100 \mathrm{etc} \text {. }
$$

- Real number - includes whole numbers, rational numbers, irrational numbers, they can be $+/-$ or 0 .
- They are real as they are NOT imaginary.

Denoted as

$$
\begin{array}{r}
\text { e.g. } 1,5.32, \frac{3}{4},-0.5, \pi, \sqrt{2} \\
4!=\begin{array}{l}
\text { factorial } \\
\text { number }
\end{array} \rightarrow 1 \times 2 \times 3 \times 4=24 \\
3!=1 \times 2 \times 3 \quad 15!=1 \times 2 \times 3 \times 4 \times \ldots \times 15
\end{array}
$$

- Rational number - a number that can be made by dividing two integers, $a \& b$, where b is not equal to zero

Denoted as QQ

$$
\text { e.g. } 1 / 2,1,0.75, \frac{1}{3}, \frac{4}{3}
$$

$$
b \neq 0
$$

$$
\left(\frac{1}{1}\right) \quad\left(\frac{3}{4}\right)
$$

- Irrational number - a real number that can NOT be made by dividing two integers, it's decimals goes on forever without repeating

Denoted as

$$
\text { e.g. } \pi, \sqrt{2}, \frac{\sqrt{5}}{7}, \sqrt{11}
$$

- Imaginary number - a number that when squared gives a negative result.
- Symbol often is i or j.
- When we square a real number we always get a positive or zero result. Therefore, we imagine squaring a number and getting a negative result.

$$
\begin{gathered}
2 \times 2=4 \\
(2)^{2}
\end{gathered} \quad \alpha \quad \begin{gathered}
-2 \times-2=4 \\
(-2)^{2}
\end{gathered}
$$

- 0 is also an imaginary number
- We use imaginary numbers to allow us to find solutions to many equations that don't have real number solutions
$\left|\overline{i^{2}=-1}\right| \quad|\overline{i=\sqrt{-1}}|=$ definition of i

$$
\begin{aligned}
& i^{0}=1 \\
& i^{1}=i \\
& i^{2}=-1 \\
& i^{3}=i^{2} \times i^{1}=-1 \times i=-i \\
& i^{4}=i^{3} \times i^{1}=-i \times i=-i^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { ecg. simplify } \\
& (3 i)^{2} \quad \text { using over of } \\
& \text { pronct mule } \\
& 3^{2} i^{2} \\
& \left.(x y)^{a}=x^{a} y^{a}\right) \\
& =-9
\end{aligned}
$$

e.g. simplify $(-9)^{1 / 2}$
(use fractional exponent rule)

$$
\begin{aligned}
& \sqrt{-9} \quad a^{1 / x}=\sqrt[x]{a} \\
& \sqrt{a x-1}=\sqrt{9} \times \sqrt{-1}
\end{aligned}
$$

$$
=3 i
$$

- Complex number - a number that is a combination of a real number and an imaginary number

Denoted as \square

Examples

$$
1+i,-2+\pi i, \sqrt{2}+\frac{i}{2}
$$

Adding complex numbers

When adding 2 complex numbers we add each part separately

$$
\begin{aligned}
& (a+b i)+(c+d i) \\
& \quad=(a+c)+(b+d) i
\end{aligned}
$$

Example/

$$
\begin{aligned}
& \text { pile/ } \\
& (3+1)+(2 i+7 i) \\
& =4+9 i
\end{aligned}
$$

Example, $(3+5 i)+(4-3 i)$

$$
\begin{aligned}
& (3+4)+(5 i-3 i) \\
& =7+2 i
\end{aligned}
$$

Multiplying complex numbers

$$
\begin{aligned}
& (a+b i)(c+d i) \\
& \quad=a c+a d i+c b i+b d i^{2}
\end{aligned}
$$

Example/ $(3+2 i)(1+7 i)$

$$
\begin{aligned}
& 3+21 i+2 i+14 i^{2} \\
= & 3+23 i-14 \\
= & -11+23 i
\end{aligned}
$$

Example/ $(x+5 i)(1+2 i)$

$$
\begin{aligned}
& x+\underline{2 x i+5 i}+10 i^{2} \\
&-10
\end{aligned}
$$

Dat

$$
x-10+(2 x+5) i
$$

Example $\left(x+(3 i)^{2}\right)\left(x-(3 i)^{2}\right)$

$$
\begin{gathered}
(3 i)^{2}=3^{2} i^{2}=-9 \\
(x-9)(x+9) \\
x^{2}+\frac{9 x-9 x}{}-81 \\
=x^{2}-81
\end{gathered}
$$

Dividing Complex Numbers

- When dividing we cont to multiply the numerator o denominator by the conjugate of the denominator

Example $\frac{2+3 i}{4-5 i}$

$$
\begin{aligned}
& \frac{2+3 i}{4-5 i} \times \frac{4+5 i}{4+5 i} \quad \\
& \frac{(2+3 i)(4+5 i)}{(4-5 i)(4+5 i)}=\frac{8+10 i+12 i+15 i^{2}}{16-25 i^{2}} \\
= & \frac{8+22 i-15}{16+25}=\frac{-7+22 i}{41}=\frac{-7}{41}+\frac{228}{4 t}
\end{aligned}
$$

Example/ $\frac{5+2 i}{1+i}$

$$
\begin{aligned}
\frac{(5+2 i)(1-i)}{(1+i)(1-i)} & =\frac{5-5 i+2 i-2 i^{2}}{1-i^{2}} \\
& =\frac{7-3 i}{2}=\frac{7}{2}-\frac{3}{2} i
\end{aligned}
$$

knot

Sums and Products

Sum denoted by \sum sigma

Product denoted by T Pi

Example,

$$
\begin{aligned}
\sum_{i=1}^{3} i & (1)+(2)+(3) \\
= & 6
\end{aligned}
$$

$$
\begin{gathered}
\text { Example, } \sum_{i=1}^{3} \sum_{j=0}^{2} i j^{2} \left\lvert\, \begin{array}{c}
\text { Rule } \\
\begin{array}{c}
\sum \sum x y \\
= \\
\sum x \sum y
\end{array} \\
\left(i \times 0^{2}\right)+\left(i \times 1^{2}\right)+\left(i \times 2^{2}\right)- \\
=i+4 i=5 i \quad \sum_{i=1}^{3} s i \\
5(1)+5(2)+5(3)=30
\end{array}\right.,
\end{gathered}
$$

$$
3+10+10
$$

Example, $\prod_{i=1}^{3} i$

$$
(1) \times(2) \times(3)=6
$$

Example/ $\prod_{i=2}^{4} 3 i$

$$
\begin{aligned}
& 3(2) \times 3(3) \times 3(4) \\
= & 6 \times 9 \times 12 \\
= & 648
\end{aligned}
$$

Example, $\pi^{2}{ }^{3} i^{3}$ Rule we

$$
\begin{aligned}
& \prod_{j=1}^{2}\left(j^{1}+j^{2}+j_{2}^{3}\right) \\
& \left(1^{1}+1^{2}+1^{3}\right) \times\left(2^{1}+2^{2}+2^{3}\right) \\
& =3 \times 14=42
\end{aligned}
$$

can swap sums (Σ) around but NOT sums with products $\Sigma \pi \neq \pi \Sigma$

Proofs by Induction

Example/

$$
\begin{aligned}
& \text { ample/ } \quad \begin{array}{l}
(n=\text { natural number }) \\
\text { Claim }
\end{array}=\begin{array}{l}
\forall n \in \mathbb{N} \\
\sum_{i=0}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
\end{array} .
\end{aligned}
$$

Step 1 : Induction start $n=1$
left/

$$
\begin{aligned}
\sum_{i=0}^{1} i^{2} & =(0)^{2}+(1)^{2} \\
& =1
\end{aligned}
$$

right,

$$
\frac{2(1)^{3}+3(1)^{2}+1}{6}=\frac{6}{6}=1
$$

Step 2: Induction assumption

$$
\sum_{i=0}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
$$

Step 3: Induction step
When $i=n+1$

$$
\sum_{i=1}^{n+1} i^{2}=\sum_{i=0}^{n} i^{2^{2}}+(n+1)^{2}
$$

right side

$$
\begin{aligned}
& \frac{2 n^{3}+3 n^{2}+n}{6}+(n+1)^{2}=\frac{2 n^{3}+3 n^{2}+n+6\left(n^{2}+2 n+1\right)}{6} \\
& =\frac{2 n^{3}+3 n^{2}+n+6 n^{2}+12 n+6}{6}=\frac{2 n^{3}+9 n^{2}+13 n+6}{6}
\end{aligned}
$$

Left side sub $n=n+1$

$$
\frac{2(n+1)^{3}+3(n+1)^{2}+(n+1)}{6}=\frac{2 n^{3}+6 n^{2}+6 n+2+3 n^{2}+6 n+3+n+1}{6}
$$

Both sides equal so by poof $=\frac{2 n^{3}+9 n^{2}+13 n+6}{6}$
of induction the daimis tree $=\frac{4}{6}$ for all of n
Example 2
(when $n=$ natural,

Claim: $\forall n \in \mathbb{N}$:

$$
\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Step 1: Induction start $n=1$ left sade

$$
\sum_{k=1}^{1} k^{3}=1^{3}=1
$$

right side,

$$
\frac{1^{2}(1+1)^{2}}{4}=\frac{4}{4}=1
$$

Step 2: Induction assumption

$$
\sum_{n=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

So must be true for an of

Step 3 : Induction step

$$
\begin{aligned}
& n=n+1 \\
& \sum_{k=1}^{n+1} k^{3}=\sum_{k=1}^{n} k^{3}+(n+1)^{3}
\end{aligned}
$$

Right side

$$
\begin{aligned}
& \frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
&= \frac{n^{2}(n+1)^{2}+4(n+1)^{3}}{4} \\
&= \frac{n^{4}+2 n^{3}+n^{2}+4 n^{3}+12 n^{2}+12 n+4}{4} \\
&= n^{4}+6 n^{3}+13 n^{2}+12 n+4 \\
& 4
\end{aligned}
$$

loft ido,

$$
\begin{aligned}
& n=n+1 \\
& \frac{(n+1)^{2}((n+1)+1)^{2}}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& \frac{n^{4}+4 n^{3}+4 n^{2}+2 n^{3}+8 n^{2}+8 n+n^{2}+4 n+4}{4} \\
& =\frac{n^{4}+6 n^{3}+13 n^{2}+12 n+4}{4}
\end{aligned}
$$

Both sides equal hence

$$
\sum_{k=1}^{n+1} k^{3}=\frac{(n+1)^{2}(n+1)^{2}}{4}
$$

By proof by induction the claim is true

